سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

New approaches in breast cancer healthcare based on hi-tech artificial intelligence

Publish Year: 1399
Type: Conference paper
Language: English
View: 312
این Paper فقط به صورت چکیده توسط دبیرخانه ارسال شده است و فایل کامل قابل دریافت نیست. برای یافتن Papers دارای فایل کامل، از بخش [جستجوی مقالات فارسی] اقدام فرمایید.

نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

IHSC13_036

Index date: 4 April 2021

New approaches in breast cancer healthcare based on hi-tech artificial intelligence abstract

Background: Now a day in early stage of breast cancer, mammography is most sensitivetechnique for detection and diagnosis. World health organization (WHO) is proposedmammography for reduce the breast cancer mortality. computer aided detection (CAD) hasimproved radiologists’ ability to detect cancers at very early stages. However, recent advancesin machine learning and data availability paves the way for further improvement of CADsystems. For this purpose, we have developed a deep learning-based method for early detectionof breast cancer from mammograms.Material and Methods: A model based on faster R-CNNs (Region proposal networks andConvolutional Neural Networks) is proposed to identify suspicious lesions including masses andcalcifications, by drawing a bounding box around them. The system then classifies these lesionsas benign or malignant. Furthermore, we have leveraged preprocessing techniques to performcontrast enhancement and histogram equalization, which significantly improved the performanceof our model. The Digital Database for Screening Mammography (DDSM) containingmammograms from 2620 individuals were employed to train the model. Subsequently, thenetwork was fine-tuned using data collected from 20 subjects at a local hospital.Results: The proposed scheme was validated using the INbreast database that includes mammogramsfrom 115 persons. The model achieved an AUC (Area Under the ROC Curve) of 0.96, and outperformsprevious methods tested on the INbreast dataset.Conclusions: The strength of the proposed approach highlights the high efficacy of deep learningbasedmethods for automatic detection of malignant lesions in mammograms. The optimized state-ofthe-art architecture along with the effective preprocessing techniques resulted in the higher performanceof the proposed model compared to that of previous methods. Nevertheless, higher quality and amountof training data can substantially enhance the success of deep learning systems. In future work, we willfocus on collecting additional data to further increase the accuracy of the proposed scheme.

New approaches in breast cancer healthcare based on hi-tech artificial intelligence Keywords:

New approaches in breast cancer healthcare based on hi-tech artificial intelligence authors

Mahmoud Shiri

Department of Biomedical Engineering, School of Medicine, Shahid Beheshti University of MedicalSciences

Masoumeh Gity

Department of Radiology, School of Medicine, Tehran University of Medical Sciences

Ali Ameri

Department of Biomedical Engineering, School of Medicine, Shahid Beheshti University of MedicalSciences,

Mohammad Ali Akhaee

Department of Electrical Engineering, University of Tehran