سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Positioning Using Classification and Regression: Case study of Oman Sea

Publish Year: 1399
Type: Journal paper
Language: English
View: 365

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_IJCOE-4-3_004

Index date: 10 April 2021

Positioning Using Classification and Regression: Case study of Oman Sea abstract

In the past few years, the location prediction played a critical role in many applications like intelligent self-learning vehicle, ocean location prediction because of the security and speed issues of GPSs. In this study, we proposed a model for location prediction on Oman’s gulf using a NetCDF Data set. The proposed model is based on classification and regression which means it first mapped the data in a region on Oman’s Gulf using classification and then using regression models to predict a specific location. This progress effect both response time and error of the system. And to the best of our knowledge, no researches are using the same idea. We used multiple classification models for classification tasks (both ensemble models and simple models) and two regression models (linear and XGboost regressor). The result shows reduce of man square error after using classification for regression task. Also, the result and explanation of the data capturing model are provided in the paper.

Positioning Using Classification and Regression: Case study of Oman Sea Keywords:

Positioning Using Classification and Regression: Case study of Oman Sea authors

Ali Ghorbani

Department of Computer Science, Shiraz University

Mohammad Reza Khalilabadi

Faculty of Naval Aviation, Malek Ashtar University of Technology

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bishop, C.M., Pattern recognition and machine learning. 2006: springer. ...
Mitchell, T.M., J.G. Carbonell, and R.S. Michalski, Machine learning: a ...
Bishop, C.M., Neural networks for pattern recognition. 1995: Oxford university ...
Dietterich, T.G. Ensemble methods in machine learning. in International workshop ...
Ho, T.K. Random decision forests. in Proceedings of 3rd international ...
Breiman, L., Bagging predictors. Machine learning, 1996. 24(2): p. 123-140. ...
XGBoost Documentation - xgboost 1.3.0-SNAPSHOT documentation. ...
Ke, G., Q. Meng, and T. Finley, Welcome to LightGBM's ...
Deng, L. and D. Yu, Deep learning: methods and applications. ...
Wei, C.-L., et al., Global patterns and predictions of seafloor ...
Li, L., et al., An ensemble classifier for eukaryotic protein ...
Cadger, F., et al. MANET location prediction using machine learning ...
Stojmenovic, I., M. Russell, and B. Vukojevic. Depth first search ...
Chen, Q., S.S. Kanhere, and M. Hassan, Adaptive position update ...
Marshall, J., et al., Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling. ...
Adcroft, A., et al. Overview of the formulation and numerics ...
Hundsdorfer, W., B. Koren, and J. Verwer, A positive finite-difference ...
Pacanowski, R. and S. Philander, Parameterization of vertical mixing in ...
https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2 ...
Leith, C.E., Diffusion approximation for two‐dimensional turbulence. The Physics of ...
Vlasenko, V., N. Stashchuk, and K. Hutter, Baroclinic tides: theoretical ...
Boyer, T.P., et al., World ocean database 2013. 2013. ...
نمایش کامل مراجع