سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

Publish Year: 1399
Type: Journal paper
Language: English
View: 228

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-8-4_006

Index date: 10 May 2021

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data abstract

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is presented to cluster incomplete fuzzy data. The method substitutes missing attribute by a trapezoidal fuzzy number to be determined by using the corresponding attribute of q nearest-neighbor. Comparisons and analysis of the experimental results demonstrate the capability of the proposed method.

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data Keywords:

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data authors

J. Tayyebi

Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran.

E. Hosseinzadeh

Department of Mathematics, Kosar University of Bojnord, Bojnord, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bellman, R. E. & Zadeh, L. A. (1970). Decision making ...
Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function ...
Dempster, A. P., Laird, N. M. & Rubin, D. B. ...
Dixon, J. K. (1979). Pattern recognition with partly missing data, ...
Dutt, A., Ismail, M. A., & Herawan, T. (2017). A ...
Fang, S. C., Hu, C. F., Wang, H. F., & ...
Farhangfar, A., Kurgan, L. A., & Pedrycz, W. (2007). A ...
Garcia-Aguado, C., & Verdegay, J. L. (1993). On the sensitivity ...
Hathaway, R. J. &Bezdek, J. C. (2001). Fuzzy c-means clustering ...
Hettich, S., Blake, C. L. & Merz, C. J. (1998). ...
Lai, Y. J. & Hwang, C. L. (1992). Fuzzy Mathematical ...
Li, D., Gu, H., & Zhang, L. (2010). A fuzzy ...
Li, D., Gu, H., & Zhang, L. (2013). A hybrid ...
Li, T., Zhang, L., Lu, W., Hou, H., Liu, X., ...
Liu, L., Sun, S. Z., Yu, H., Yue, X. & ...
Luenberger, D. G. (1984). Linear and Nonlinear Programming, 2nded. Addison-Wesley ...
Maleki, H. R. (2002). Ranking functions and their applications to ...
Mclachlan, G. J. & Basford, K. E. (1988). Mixture models: ...
Mesquita, D. P., Gomes, J. P., Junior, A. H. S., ...
Miyamoto, S., Takata, O. & Umayahara, K. (1998). Handling missing ...
Owhadi-Kareshki, M. (2019). Entropy-based Consensus for Distributed Data Clustering, Journal ...
Sebestyen, G. S. (1962). Decision-making process in pattern recognition, NY: ...
Shaocheng, T. (1994). Interval number and fuzzy number linear programming, ...
Shen, J., Zheng, E., Cheng, Z. & Deng, C. (2017). ...
Li, J., Struzik, Z., Zhang, L., & Cichocki, A. (2015). ...
Tan, P. N., Steinbach, M. & Kumar, V. (2005). Introduction ...
Tanaka, H. &Ichihashi, H. (1984). A formulation of fuzzy linear ...
Teodoridis, S. & Koutroumbas, K. (2006). Pattern recognition, Third ed. ...
Wang, Z. (2017). Determining the clustering centers by slope difference ...
Wang, X., Ruan, D. & Kerre, E. E. (2009). Mathematics ...
Wu, S., Pang, Y., Shao, S. & Jiang, K. (2018). ...
Yager, R.R. (1981). A procedure for ordering fuzzy sets of ...
Yang, M. S. & Nataliani, Y. (2017). Robust-learning fuzzy c-means ...
Zhang, T. T. & Yuan, B. (2018). Density-based multiscale analysis ...
نمایش کامل مراجع