Credit Scoring Active Telegram Channels Offering Stock Signals

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 103

This Paper With 23 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFIFSA-6-3_006

تاریخ نمایه سازی: 1 خرداد 1401

Abstract:

The impact of personal judgment on the assessment of an individual’s financial situation has been drastically reduced through the development of credit scoring. The systems are capable of deciding based on an applicant’s total score which is a combination of several factors and indicators. Over the past few decades, credit scoring has been considered an essential tool for evaluation in various institutions and has also been able to transform the industry as a whole. Most of the research conducted in the field has taken into account traditional credit scoring, but considering the ever-evolving technological world that we live in and the increasing emergence of new social media networks, such research has now become obsolete. Such technological advancements have not only paved the way for far more sophisticated credit scoring systems but also essentially rendered the previous generations useless. It should be noted that credit scoring and its features have widely been discussed across the globe but, considering the various aspects and models that have to be taken into account, no one best method has been designed or suggested for it so far. This study shows that social media channels tend to perform relatively well in predicting stock market trends when the overall index is growing positively. The research also illustrates that a higher number of days of activity and a large number of signals released do not necessarily mean that the channels can or have credited their offered stock return on a one-month time frame. The methodology used is "CRISP-DM," which consists of six steps. The main variables include social and financial variables that are examined for six months. In the research, we seek to identify, analyze and categorize active telegram channels in stock signals using the data mining model and the RFM method. The k-means algorithm is selected for this category. Then, in each cluster, the importance of social variables and the performance of the channels are extracted by the EXTRATREECLASSIFIER algorithm, and channel performance is measured by considering the changes in the total index.

Authors

Babak Sohrabi

Prof., Department of Information Technology Management, Faculty of management, University of Tehran, Tehran, Iran.

Ahmad Khalili Jafarabad

Ph.D., Department of Information Technology Management, Faculty of Management, University of Tehran, Tehran, Iran.

Saba Orfi

MSc. In Management Information Systems, Department of Information Technology Management, Faculty of Management, University of Tehran, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abdou, H. A., & Pointon, J. (۲۰۱۱). Credit Scoring, Statistical ...
  • Abdullah, M. A., Ahmad, A., Nayan, N. A. M., Azhar, ...
  • Bhati, B. S., & Rai, C. S. (۲۰۲۰). Ensemble-Based Approach ...
  • Birant, D. (۲۰۱۱). Data Mining Using RFM Analysis. In Knowledge-Oriented ...
  • Brownlee, J. (۲۰۱۶, June ۲). Ensemble Machine Learning Algorithms In Python ...
  • Doumpos, M., Lemonakis, C., Niklis, D., & Zopounidis, C. (۲۰۱۹). Introduction ...
  • Fei, W., Gu, J., Yang, Y., & Zhou, Z. (۲۰۱۵). ...
  • Geurts, P., Ernst, D., & Wehenkel, L. (۲۰۰۶). Extremely Randomized ...
  • Grunert, J., Norden, L., & Weber, M. (۲۰۰۵). The Role ...
  • Gül, S., Kabak, Ö., & Topcu, I. (۲۰۱۸). A Multiple ...
  • Hendricks, M. K., & Budree, A. (۲۰۱۹). Can A Mobile ...
  • Hindistan, Y. S., Kiyakoglu, B. Y., Rezaeinazhad, A. M., Korkmaz, ...
  • Hornik, K. (۲۰۱۲). The Comprehensive R Archive Network: The Comprehensive ...
  • Kulkarni, S. V., & Dhage, S. N. (۲۰۱۹). Advanced Credit ...
  • Kumar, R., Mukherjee, S., Kumar, B., & Bala, P. K. ...
  • Lee, T.-S., Chiu, C.-C., Lu, C.-J., & Chen, I.-F. (۲۰۰۲). ...
  • Leitch, D., & Sherif, M. (۲۰۱۷). Twitter Mood, CEO Succession ...
  • Lohokare, J., Dani, R., & Sontakke, S. (۲۰۱۷). Automated Data ...
  • Malik, P. P. L. G. (۲۰۱۱). Generating Customer Profiles For ...
  • Marikkannu, P., & Shanmugapriya, K. (۲۰۱۱). Classification Of Customer Credit ...
  • Nagpal, A., & Gabrani, G. (۲۰۱۹). Python For Data Analytics, ...
  • Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, ...
  • Shema, A. (۲۰۱۹). Effective Credit Scoring Using Limited Mobile Phone ...
  • Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., ...
  • Thomas, L. C. (۲۰۰۰). A Survey Of Credit And Behavioural ...
  • Wei, Y., Yildirim, P., Van Den Bulte, C., & Dellarocas, ...
  • Wirth, R., & Hipp, J. (۲۰۰۰). CRISP-DM: Towards A Standard Process ...
  • Yadi, L. I. U., Yuning, S., Jiayue, Y. U., Yingfa, ...
  • Yu, J., Yao, J., & Chen, Y. (۲۰۱۹). Credit Scoring ...
  • Yu, X., Yang, Q., Wang, R., Fang, R., & Deng, ...
  • Yuan, H., Lau, R. Y. K., Wong, M. C. S., ...
  • Zhang, Y., Jia, H., Diao, Y., Hai, M., & Li, ...
  • Zhao, Y., Shen, Y., & Huang, Y. (۲۰۱۹). DMDP: A ...
  • نمایش کامل مراجع