سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Frontiers in Determination of Solution Gas-Oil Ratio using Artificial Neural Networks with Multi-Layers Perceptron

Publish Year: 1386
Type: Conference paper
Language: English
View: 1,438

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

IPEC02_106

Index date: 11 June 2012

Frontiers in Determination of Solution Gas-Oil Ratio using Artificial Neural Networks with Multi-Layers Perceptron abstract

For solving complex problems, it’s needed to go beyond standard mathematical techniques. Instead, it’s necessary to complement the conventional analysis methods with a number emerging methodologies and soft computing techniques such as expert system, artificial neural network, fuzzy logic, genetic algorithm, probabilistic reasoning, and parallel processing techniques. Soft computing differs from conventional (hard computing) in that, unlike hard computing, it is tolerant of imprecision, uncertainty, and partial truth. Soft computing is also tractable, robust, efficient and inexpensive. This paper presents a technique to model the behavior of crude oil systems. The proposed technique is using Multi-Layers Perceptron neural network. The model predicts solution gas-oil ratio. Input data to the Multi-Layers Perceptron are reservoir pressure, temperature, stock tank oil gravity, and separator gas gravity. The proposed Multi-Layers Perceptron is tested using PVT properties of other samples that have not been used during the training process. Result show good accuracy between the Multi-Layers Perceptron predicted data and actual data.

Frontiers in Determination of Solution Gas-Oil Ratio using Artificial Neural Networks with Multi-Layers Perceptron Keywords:

Multi-Layers Perceptron , Neural Networks , Neural Network Regression Techniques , Solution Gas-Oil Ratio

Frontiers in Determination of Solution Gas-Oil Ratio using Artificial Neural Networks with Multi-Layers Perceptron authors

Hamed Darabi

Chemical Engineering Faculty, Sharif University of Technology, Tehran, Iran

Bahram Mokhtari

Iranian Elite Academy, Aghdasieh, Tehran, Iran

Masoud Enayati

Lavan Island Oil Laboratory, Iranian Offshore Oil Co., Park Way, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Abdul Majeed, G.H., :Evaluation of PVT Correlations", Paper SPE, No. ...
Abdul Majeed, G.H., :Statistical Evaluation of PVT Correlation Solution Gas-Oil ...
Ahmed, T., "Hydrocarbon Phase Behavior", Gulf Publishing Co., Houston, TX, ...
Al-Marhoun, M.A., _ Correlations for Middle East Crude Oils", Petroleum ...
Elsharkawy, A.M., "Changes in Gas and Oil Gravity during Depletion ...
Ali, J.K., :Neural Networks: A New Tool for the Petroleum ...
Briones, "Application of Neural Network in the Prediction of Reservoir ...
Gharbi, R.B., and Elsharkawy, A.M., "Neural Network Model for Estimating ...
Gharbi, R.B., and Elsharkawy, A.M., :Universal Neural Network based Model ...
Elsharkawy, A.M., and Alikhan, A.A., "Correlations for Predicting Solution Gasoil ...
نمایش کامل مراجع