Frontiers in Determination of Solution Gas-Oil Ratio using Artificial Neural Networks with Multi-Layers Perceptron
Publish place: 02nd Iranian Petroleum Engineering Congress
Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,402
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IPEC02_106
تاریخ نمایه سازی: 22 خرداد 1391
Abstract:
For solving complex problems, it’s needed to go beyond standard mathematical techniques. Instead, it’s necessary to complement the conventional analysis methods with a number emerging methodologies and soft computing techniques such as expert system, artificial neural network, fuzzy logic, genetic algorithm, probabilistic reasoning, and parallel processing techniques. Soft computing differs from conventional (hard computing) in that, unlike hard computing, it is tolerant of imprecision, uncertainty, and partial truth. Soft computing is also tractable, robust, efficient and inexpensive. This paper presents a technique to model the behavior of crude oil systems. The proposed technique is using Multi-Layers Perceptron neural network. The model predicts solution gas-oil ratio. Input data to the Multi-Layers Perceptron are reservoir pressure, temperature, stock tank oil gravity, and separator gas gravity. The proposed Multi-Layers Perceptron is tested using PVT properties of other samples that have not been used during the training process. Result show good accuracy between the Multi-Layers Perceptron predicted data and actual data.
Keywords:
Multi-Layers Perceptron , Neural Networks , Neural Network Regression Techniques , Solution Gas-Oil Ratio
Authors
Hamed Darabi
Chemical Engineering Faculty, Sharif University of Technology, Tehran, Iran
Bahram Mokhtari
Iranian Elite Academy, Aghdasieh, Tehran, Iran
Masoud Enayati
Lavan Island Oil Laboratory, Iranian Offshore Oil Co., Park Way, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :