Sociocultural Identity DevelopmentScaffolded byCollaboration-ConduciveStrategies:A Case of an Iranian EFL Writing Class
Publish Year: 1394
نوع سند: مقاله ژورنالی
زبان: English
View: 182
This Paper With 32 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ELT-7-15_005
تاریخ نمایه سازی: 10 دی 1401
Abstract:
This investigation postulatesVygotsky’s (۱۹۷۸) concept of zone of proximal development (ZPD) and his related “scaffolding” metaphor as well as Norton’s (۲۰۰۶) principles of sociocultural identity as its theoretical foundation.Thisresearchintends to scrutinizethe socioculturally-oriented mediationalmechanisms utilized in student-student and student-teacher collaborationsin an Iranian EFL writing class. Such scrutinyis to reveal the learners’sociocultural change in behavior, and how their sociocultural identity is scaffolded and developed through collaborative negotiation in writing. For this purpose, Lidz's Rating Scale (۱۹۹۱) was adopted to delve into the sociocultural-identity-conducive interactions produced by ۳۲ sophomoresof English Language and Literature at Shiraz University as they collaborated in writing. The analysis of such scaffolding-mediated discourse provides useful insights into the nature of the learners’ sociocultural identity development.Particularly, the results provide evidence that dialogic exchangesthrough linguistic meanson the part of peers and the teacher include some behaviors such as intentionality, joint regard, affective involvement, communicative ratchet, contingent responsivity, intersubjectivity, and L۱ use in collaborative writing taskswhich playthe most significant role in establishing new identities and gaining self-regulation, i.e. developing sociocultural identity.
Keywords:
Authors
سیدمحمدعلی سوزنده فر
Ph.D. Candidate, Shiraz University (Corresponding author)
رحمان صحراگرد
Associate Professor, Shiraz University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :