سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Using Memetic Algorithms to Optimize Run-Timein Genetic Playing of Mastermind

Publish Year: 1399
Type: Conference paper
Language: English
View: 358

This Paper With 10 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

SCCS01_004

Index date: 1 January 2023

Using Memetic Algorithms to Optimize Run-Timein Genetic Playing of Mastermind abstract

Mastermind is an interesting dynamic constraint satisfaction problem which resembledcracking or code breaking. Therefore, solving Mastermind especially applying geneticalgorithms in it has received much attention in the literature. Genetic algorithms are able tobreak the code in a low number of guesses, however, they suffer from long run-times. Toaddress this problem, in this paper, we presented memetic algorithms to solve Mastermind.Specifically, we applied simulated annealing in the different generations of the geneticalgorithm to locate local minimums more efficiently. Our results showed that not only thememetic algorithm solved Mastermind in a shorter time than the genetic algorithm but alsoslightly fewer guesses were required.

Using Memetic Algorithms to Optimize Run-Timein Genetic Playing of Mastermind Keywords:

Using Memetic Algorithms to Optimize Run-Timein Genetic Playing of Mastermind authors

Zahra Karimi

Department of Computer Science, Shahrekord University

Alireza Abdollahi-Goldare

Department of Computer Science, Shahrekord University