Investigating Revenue Smoothing Thresholds That Affect Bank Credit Scoring Models: An Iranian Bank Case Study

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 150

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JADM-11-1_011

تاریخ نمایه سازی: 20 فروردین 1402

Abstract:

Companies have different considerations for using smoothing in their financial statements, including annual general meeting, auditing, Regulatory and Supervisory institutions and shareholders requirements. Smoothing is done based on the various possible and feasible choices in identifying company’s incomes, costs, expenses, assets and liabilities. Smoothing can affect credit scoring models reliability, it can cause to providing/not providing facilities to a non-worthy/worthy organization orderly, which are both known as decision errors and are reported as “type I” and “type II” errors, which are very important for Banks Loan portfolio. This paper investigates this issue for the first time in credit scoring studies on the authors knowledge and searches. The data of companies associated with a major Asian Bank are first applied using logistic regression. Different smoothing scenarios are tested, using wilcoxon statistic indicated that traditional credit scoring models have significant errors when smoothing procedures have more than ۲۰% change in adjusting company’s financial statements and balance sheets parameters.

Authors

Seyed Mahdi Sadatrasoul

Information Technology Management department, Management school, Kharazmi, Tehran, Iran.

Omid Mahdi Ebadati

Information Technology Management department, Management school, Kharazmi, Tehran, Iran.

Amir Amirzadeh Irani

Information Technology Management department, Management school, Kharazmi, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • S. Watts, L. Ross and J. Zimmerman, “Towards a positive ...
  • R. W. Holthausen, “Evidence on the effect of bond covenants ...
  • K. Kanagaretnam, G. J. Lobo, and R. Mathieu. “Managerial incentives ...
  • S. E. Michelson, J. Wagner, and C. W. Wootton. “The ...
  • S. M. Sadatrasoul, M. Gholamian, M. Siami, and Z. Hajimohammadi, ...
  • F. Louzada, A. Ara and B. F. Guilherme, “Classification methods ...
  • S. M. Sadatrasoul, "Matrix Sequential Hybrid Credit Scorecard Based on ...
  • G. Dong, L. Kin Keung and J. Yen, “Credit scorecard ...
  • N. Siddiqi, “Credit risk scorecards: developing and implementing intelligent credit ...
  • L. C.Thomas, “Consumer Credit Models: Pricing, Profit and Portfolios: Pricing, ...
  • A. Blöchlinger and L. Markus, “Economic benefit of powerful credit ...
  • H. Zhao, “A multi-objective genetic programming approach to developing Pareto ...
  • H. Ince and A. Bora, “A comparison of data mining ...
  • C. Beidleman, "Income Smoothing: The Role of Management', "The Accounting ...
  • J. R. Graham, R. H. Campbell and S. Rajgopal, "The ...
  • R. LaFond, M. H. Lang and H. A. Skaife, "Earnings ...
  • M. Skurichina, R. P. W. Duin, "The Role of Combining ...
  • J. Sill, G. Takács, L. Mackey and D. Lin, "Feature-weighted ...
  • M.-W. Li, D.-Y. Xu, J. Geng and W.-C. Hong, "A ...
  • نمایش کامل مراجع