A Bi-objective Virtual-force Local Search PSO Algorithm for Improving Sensing Deployment in Wireless Sensor Network
Publish Year: 1402
Type: Journal paper
Language: English
View: 218
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADM-11-1_001
Index date: 9 April 2023
A Bi-objective Virtual-force Local Search PSO Algorithm for Improving Sensing Deployment in Wireless Sensor Network abstract
In this paper, we present a bi-objective virtual-force local search particle swarm optimization (BVFPSO) algorithm to improve the placement of sensors in wireless sensor networks while it simultaneously increases the coverage rate and preserves the battery energy of the sensors. Mostly, sensor nodes in a wireless sensor network are first randomly deployed in the target area, and their deployment should be then modified such that some objective functions are obtained. In the proposed BVFPSO algorithm, PSO is used as the basic meta-heuristic algorithm and the virtual-force operator is used as the local search. As far as we know, this is the first time that a bi-objective PSO algorithm has been combined with a virtual force operator to improve the coverage rate of sensors while preserving their battery energy. The results of the simulations on some initial random deployments with the different numbers of sensors show that the BVFPSO algorithm by combining two objectives and using virtual-force local search is enabled to achieve a more efficient deployment in comparison to the competitive algorithms PSO, GA, FRED and VFA with providing simultaneously maximum coverage rate and the minimum energy consumption.
A Bi-objective Virtual-force Local Search PSO Algorithm for Improving Sensing Deployment in Wireless Sensor Network Keywords:
A Bi-objective Virtual-force Local Search PSO Algorithm for Improving Sensing Deployment in Wireless Sensor Network authors
Vahid Kiani
Department of Computer Engineering, University of Bojnord, Bojnord, Iran.
Mahdi Imanparast
Department of Computer Science, University of Bojnord, Bojnord, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :