Numerical modeling of particles resuspension due to human stepping
Publish place: Energy Equipment and Systems، Vol: 10، Issue: 4
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 203
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EES-10-4_006
تاریخ نمایه سازی: 28 فروردین 1402
Abstract:
In this paper, the induced airflow and the resultant resuspension of particles due to human walking are studied numerically using the dynamic mesh technique. Based on the results, the air is ejected from the sole and floor gap when the foot moves down, similar to a radial wall jet. During the upward motion, a strong gap flow is induced beneath the sole, which causes the surrounding air to be sucked toward the shoe center. Accordingly, particles are mainly detached in the downward motion of the foot. Then, they are entrained into the far-field flow during the foot's upward motion. Simulations indicate that the region beneath the sole edges is the most susceptible area for particles to be detached. As a result, fast walking is associated with a higher resuspension rate per footstep, up to two orders of magnitude due to increased shear stress on the floor. Although the shoe size influences the rate of particle resuspension, it is not as significant as the stepping time. Based on the results, the shear velocity due to stepping may be up to ۰.۴ m/s which can resuspend ۱۰ μm particles with a resuspension rate of about ۱۰-۵ s-۱. The effect of the main geometric features of the stepping process, including the stepping time and the shoe size, are investigated to provide a general correlation for its prediction with the R-squared value of ۰.۹۹.
Keywords:
Authors
Behrang Sajadi
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Mohammad Hassan Saidi
School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Goodarz Ahmadi
Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY, USA
Mohsen Soleimani
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :