سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling

Publish Year: 1391
Type: Conference paper
Language: English
View: 2,095

This Paper With 9 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICCE09_445

Index date: 28 September 2012

ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling abstract

The use of artificial neural network (ANN) models in water resource applications as rainfall-runoff modeling has grown considerably over the last decade. In order to obtain more accurate models, the qualification of applied data must be improved. Satellite data as a source of proper data in field of rainfall measurement over a watershed is utilized in this paper. Doubtlessly, spatial pre-processing methods can promote the quality of precipitation data.In the current research the self organizing map (SOM) is used for spatial pre-processing purpose. A two-level SOM neural network is applied to identify spatially homogeneous clusters of the satellitedata in order to choose the most operative and effective data for the Feed-Forward Neural Network (FFNN) model which is trained by the Levenberg-Marquardt algorithm and considering only one hidden layer. The results indicate that the imposition of spatial pre-processed data to the FFNN model lead to promising evidence in the improvement of rainfall-runoff model.

ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling Keywords:

Rainfall-runoff , wavelet , ANN , SOM , satellite data , pre-processing clustering- Gilgal Abay watershed

ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling authors

Vahid Nourani

Associate Prof., Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Akhtar M. K., G. A. Corzo, S. J. van Andel1, ...
Antar, M.A., Elassiouti, I., Alam, M.N, and R ainfall-runof modeling ...
ASCE task committee on application of Artificial Neural Networks in ...
Dawson, C.W., Wilby, R., An artificial neural network approach to ...
Gavin J. Bowden, Graeme C. Dandy, Holger R. Maier, Input ...
Grimes, D.I.F., Coppola, E, Verdecchia, M., Visconti, G., A neural ...
Hornik, K., Multilayer feed-forward networks cre universal approximators, Neural Networks, ...
Hsu, K., Gupta, H.V., Sorooshian, S., Artificial neural network modeling ...
Hsu K. _ S. Li, Clustering sP atial-temporal precipitation data ...
Hsu, K., H. V. Gupta, X. Gao, S. Sorooshian, and ...
Joyce, R. J, J. E. Janowiak, P. A. Arkin, and ...
Kalteh, A.M., P. Hjorth and R. Berndtsson, Review of S ...
Kim, T., Valdes, J.B., Nonlinear model for drought forecasting based ...
Kohonen T., Self-organizing maps. Heidelberg: Springer- Verlag Berlin; 1997. ...
o" International Congress on Civi Engineering, May 8-10, 2012 Isfahan ...
Liu, Y., and Weisberg, R.H., A Review of S elf-Organizing ...
Nourani , V., Mano, A., S emi-dis tributed flood runoff ...
Nourani, V., Monadjemi, P., Singh, V.P., Liquid analog model for ...
Nourani V., and , Kalantari O., Integrated Artificial Neural Network ...
Nourani, V., Reply to comment _ Nourani V, Mogaddam A.A ...
_ V., Kisi 6., _ hybrid Artificial Intelligence approaches for ...
Salas, J.D., Delleur, J.W., Yevjevich, V., Lane, W.L, Applied Modeling ...
Senthil Kumar, A.R., Sudheer, K.P., Jain, S.K., Agarwal P.K., Rainfal ...
Toth E., Classification of hydro- meteorological conditions and multiple artificial ...
نمایش کامل مراجع