ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling
Publish place: 9th International Congress on Civil Engineering
Publish Year: 1391
Type: Conference paper
Language: English
View: 2,095
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICCE09_445
Index date: 28 September 2012
ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling abstract
The use of artificial neural network (ANN) models in water resource applications as rainfall-runoff modeling has grown considerably over the last decade. In order to obtain more accurate models, the qualification of applied data must be improved. Satellite data as a source of proper data in field of rainfall measurement over a watershed is utilized in this paper. Doubtlessly, spatial pre-processing methods can promote the quality of precipitation data.In the current research the self organizing map (SOM) is used for spatial pre-processing purpose. A two-level SOM neural network is applied to identify spatially homogeneous clusters of the satellitedata in order to choose the most operative and effective data for the Feed-Forward Neural Network (FFNN) model which is trained by the Levenberg-Marquardt algorithm and considering only one hidden layer. The results indicate that the imposition of spatial pre-processed data to the FFNN model lead to promising evidence in the improvement of rainfall-runoff model.
ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling Keywords:
Rainfall-runoff , wavelet , ANN , SOM , satellite data , pre-processing clustering- Gilgal Abay watershed
ANN-SOM approach for satellite data pre-processing in rainfall-runoff modeling authors
Vahid Nourani
Associate Prof., Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :