Intelligent Sensor Fusion in High Precision Satellite Attitude Estimation Utilizing an Adaptive-Network-Based Fuzzy Inference System
Publish Year: 1400
Type: Journal paper
Language: English
View: 216
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JASTI-14-2_003
Index date: 30 July 2023
Intelligent Sensor Fusion in High Precision Satellite Attitude Estimation Utilizing an Adaptive-Network-Based Fuzzy Inference System abstract
In this study, Adaptive Network-Based Fuzzy Inference System (ANFIS) is presented with sensor data fusion approach to estimate satellite attitude. The active sensors are sun and earth sensors. Satellite attitude dynamic, including attitude quaternion and angular velocities are estimated simultaneously utilizing the measured values by the sensors. The Extended Kalman Filter (EKF) is employed to verify and evaluate the efficiency of the presented method. Additionally, the neural networks with Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) are also designed to prove the superiority of the proposed ANFIS network among the smart methods of sensor data fusion for satellite attitude estimation. Root Mean Square Error (RMSE) as a numerical criterion and graphical analysis of residues are utilized to evaluate the simulation results. The simulations confirm that the obtained estimations from ANFIS network have more accuracy in modeling of nonlinear complex systems compared to EKF, MLP and RBF networks. In general, using intelligent data fusion, especially ANFIS, reduces attitude estimation error and time in comparison to the classical EKF method.
Intelligent Sensor Fusion in High Precision Satellite Attitude Estimation Utilizing an Adaptive-Network-Based Fuzzy Inference System Keywords:
Intelligent Sensor Fusion in High Precision Satellite Attitude Estimation Utilizing an Adaptive-Network-Based Fuzzy Inference System authors
Mahdi Fakoor
University of Tehran
Hamidreza Heidari
University of Tehran
Behzad Moshiri
University of Tehran
Amir reza Kosari
university of Tehran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :