Examining the Perceived Consequences and Usage of MOOCs on Learning Effectiveness
Publish place: Iranian Journal of Management Studies، Vol: 13، Issue: 3
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 132
This Paper With 31 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-13-3_007
تاریخ نمایه سازی: 6 شهریور 1402
Abstract:
Massive Open Online Courses (MOOCs) have recently received a great deal of attention from the academic communities. However, these courses face low completion rates and there are very limited research pertaining to this problem. Therefore, this study uses Triandis theory to better understand variables that are indicative of MOOC completion. Furthermore, this study scrutinizes the quantitative relationship between MOOC usage and learning effectiveness. Two hundred and thirty-four users from selected Coursera participated in this study to evaluate the proposed model. The partial least squares (PLS) were used to analyze the collected data and test the research hypotheses. The results indicated that perceived consequences (including knowledge growth, social interaction, and compatibility) and affect have a significant impact on intention to use MOOC. In contrast, social factors delineated the insignificant effects on intention to use MOOC. The findings indicated that facilitative conditions and intentions to use MOOC have a strong and positive impact on the actual use of MOOC. Hypotheses regarding the influence of perceived consequences and the actual usage of MOOC on learning effectiveness were upheld.
Keywords:
Authors
علیرضا تمجید یامچلو
Faculty of Computer Sciences and Information Technology, Islamic Azad University, Parand Branch, Tehran, Iran
رحمت الله قلی پور
Faculty of Management, University of Tehran, Tehran, Iran
محمدعلی افشار کاظمی
Faculty of Management, Islamic Azad University, Tehran Central Branch, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :