سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Selecting the appropriate scenario for forecasting energy demands of residential and commercial sectors in Iran using two metaheuristic algorithms

Publish Year: 1395
Type: Journal paper
Language: English
View: 142

This Paper With 23 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JIJMS-9-1_006

Index date: 28 August 2023

Selecting the appropriate scenario for forecasting energy demands of residential and commercial sectors in Iran using two metaheuristic algorithms abstract

This study focuses on the forecasting of energy demands of residential and commercial sectors using linear and exponential functions. The coefficients were obtained from genetic and particle swarm optimization (PSO) algorithms. Totally, 72 different scenarios with various inputs were investigated. Consumption data in respect of residential and commercial sectors in Iran were collected from the annual reports of the central bank, Ministry of Energy and the Petroleum Ministry of Iran (2010). The data from 1967 to 2010 were considered for the case of this study. The available data were used partly to obtain the optimal, or near optimal values of the coefficient parameters (1967–2006) and for testing the models (2007–2010). Results show that the PSO energy demand estimation exponential model with inputs, including value addition of all economic sectors, value of constructed buildings, population, and price indices of electrical and fuel appliances using the mean absolute percentage error on tests data were 1.97%, was considered the most suitable model. Finally, basing on the best scenario, the energy demand of residential and commercial sectors is estimated at 1718 mega barrels of oil equivalent up to the year 2032.

Selecting the appropriate scenario for forecasting energy demands of residential and commercial sectors in Iran using two metaheuristic algorithms Keywords:

energy demand , forecasting , Genetic Algorithm , Particle Swarm Optimization Algorithm , Residential and commercial sectors

Selecting the appropriate scenario for forecasting energy demands of residential and commercial sectors in Iran using two metaheuristic algorithms authors

حسام نظری

Faculty of Management, University of Tehran, Tehran, Iran

عالیه کاظمی

Faculty of Management, University of Tehran

محمد حسین هاشمی

Faculty of Power and Water (Shahid Abbaspour), Shahid Beheshti University

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
AlRashidi, M., & El-Naggar, K. (۲۰۱۰).“Long term electric load forecasting ...
Ardakani, F., & Ardehali, M. (۲۰۱۴).“Long-term electrical energy consumption forecasting ...
Assareh, E., Behrang, M., Assari, M., & Ghanbarzadeh, A. (۲۰۱۰). ...
Azadeh, A., & Tarverdian, S. (۲۰۰۷). “Integration of genetic algorithm, ...
Canyurt, O. E., & Ozturk, H. K. (۲۰۰۸). “Application of ...
Haupt, R. L., & Haupt, S. E. (۲۰۰۴). Practical genetic ...
Karbassi, A., Abduli, M., & Mahin Abdollahzadeh, E. (۲۰۰۷). “Sustainability ...
Kıran, M. S., Özceylan, E., Gündüz, M., & Paksoy, T. ...
Labandeira, X., Labeaga, J. M., & López-Otero, X. (۲۰۱۱). “Energy ...
Lee, Y.-S., & Tong, L.-I. (۲۰۱۱). “Forecasting energy consumption using ...
Leticia, B., Boogen, N., & Filippini, M. (۲۰۱۲). “Residential electricity ...
Madlener, R., & Alt, R. (۱۹۹۶). “Residential energy demand analysis: ...
Ministry of Energy (MOE). Energy balance annual report. Tehran, Iran. ...
Ozturk, H. K., & Ceylan, H. (۲۰۰۵). “Forecasting total and ...
Poyer, D. A., &Williams, M. (۱۹۹۳). “Residential energy demand: additional ...
Shakouri.G. H & Kazemi, A. (۲۰۱۱). “Energy demand forecast of ...
Sözen, A., Gülseven, Z., & Arcaklioğlu, E. (۲۰۰۷). “Forecasting based ...
Ünler, A. (۲۰۰۸). “Improvement of energy demand forecasts using swarm ...
نمایش کامل مراجع