سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

بررسی دقت ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک نسبت به روش های متداول خطی در پیش بینی سود هر سهم

Publish Year: 1402
Type: Journal paper
Language: Persian
View: 83
این Paper فقط به صورت چکیده توسط دبیرخانه ارسال شده است و فایل کامل قابل دریافت نیست. برای یافتن Papers دارای فایل کامل، از بخش [جستجوی مقالات فارسی] اقدام فرمایید.

نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JFMZ-11-3_004

Index date: 25 October 2023

بررسی دقت ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک نسبت به روش های متداول خطی در پیش بینی سود هر سهم abstract

اطلاعات مربوط به سود و سود پیش بینی شده هر سهم معیارهایی هستند که از دیدگاه بسیاری از استفاده کنندگان با اهمیت تلقی می شوند؛ لذا شرکت ها برای جذب سرمایه گذاران تلاش می کنند سود هر سهم را با بیشترین دقت پیش بینی کنند. از سوی دیگر، علیرغم روش های متعدد پیش بینی سود، پیش بینی دقیق سود هر سهم در حوزه مالی کار چندان آسانی نیست و اغلب پژوهشگران درصدد تعیین بهترین روش برای پیش بینی سود هستند؛ بنابراین هدف اصلی این پژوهش بررسی دقت ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک نسبت به روش های متداول خطی در پیش بینی سود هر سهم است. بدین منظور، نمونه ای متشکل از ۱۰۰ شرکت پذیرفته شده در بورس اوراق بهادار تهران طی سال های ۱۳۸۷-۱۳۹۸ بررسی شده است. در راستای دستیابی به اهداف پژوهش، ابتدا با مطالعه پژوهش های پیشین در حوزه پیش بینی سود ۱۴ نسبت مالی اثرگذار بر پیش بینی سود انتخاب شده است. سپس، به منظور ارائه مدلی در زمینه پیش بینی سودآوری شرکت ها، به مقایسه مدل ترکیبی ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک، ماشین بردار پشتیبان و رگرسیون خطی پرداخته شده است. نتایج پژوهش نشان داد، مدل ترکیبی ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک در پیش بینی روند حرکتی سود هر سهم بسیار بهتر عمل کرده و در مقایسه با مدل ماشین بردار پشتیبان بر اساس توابع کرنلی و روش رگرسیون خطی از دقت بالاتری برخوردار است. به گونه ای که با توسعه مدل ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک خطای آموزش مدل به مقدار ۰۳۶/۰ کاهش و بر دقت مدل تا ۷۵ درصد افزوده می شود.

بررسی دقت ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک نسبت به روش های متداول خطی در پیش بینی سود هر سهم Keywords:

بررسی دقت ماشین بردار پشتیبان بر پایه الگوریتم ژنتیک نسبت به روش های متداول خطی در پیش بینی سود هر سهم authors

صدیقه عزیزی

استادیار حسابداری، دانشگاه آزاد اسلامی، واحد کرمان، کرمان، ایران