Evaluation of Groundwater Vulnerability Using Data Mining Technique in Hashtgerd Plain
Publish place: Journal of the Earth and Space Physics، Vol: 42، Issue: 4
Publish Year: 1395
Type: Journal paper
Language: Persian
View: 155
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JESPHYS-42-4_004
Index date: 18 December 2023
Evaluation of Groundwater Vulnerability Using Data Mining Technique in Hashtgerd Plain abstract
Groundwater vulnerability assessment would be one of the effective informative methods to provide a basis for determining source of pollution. Vulnerability maps are employed as an important solution in order to handle entrance of pollution into the aquifers. A common way to develop groundwater vulnerability map is DRASTIC. Meanwhile, application of the method is not easy for any aquifer due to choosing appropriate constant values of weights and ranks. Clustering technique would be an influential method for regionalization of groundwater flow zone to facilitate vulnerability assessment of groundwater aquifers. In this study, a new approach using k-means clustering is applied to make vulnerability maps. Four features of depth to groundwater, hydraulic conductivity, recharge value and vadose zone were considered at the same time as features of clustering. Five regions are recognized out of the Hashtgerd plain. Each zone corresponds to a different level of vulnerability. The results show that clustering provides a realistic vulnerability map so that, Pearson’s correlation coefficients between nitrate concentrations and clustering vulnerability is ۷۲%.
Evaluation of Groundwater Vulnerability Using Data Mining Technique in Hashtgerd Plain Keywords:
Evaluation of Groundwater Vulnerability Using Data Mining Technique in Hashtgerd Plain authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :