Approximate Pareto Optimal Solutions of Multi-objective Optimal Control Problems by Evolutionary Algorithms
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,541
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICNMO01_012
Index date: 9 March 2013
Approximate Pareto Optimal Solutions of Multi-objective Optimal Control Problems by Evolutionary Algorithms abstract
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems is offered. The first, adiscretized form of the time-control space is considered. Then, corresponding to a piecewise linear control form discretized time-control space and a numerical approach ofsolving differential equations, a piecewise linear trajectory is obtained .A numerical integration method allow us to discretize the objective functions and so a special multiobjective optimization problem is created. A modified evolutionary algorithm for obtaining Pareto optimal solutions of new problem with considering the final state conditions is proposed, to extract approximate solutions of original problem. Numerical example is presented to show the proficiency of the given approach
Approximate Pareto Optimal Solutions of Multi-objective Optimal Control Problems by Evolutionary Algorithms Keywords:
Multi-objective optimal control problem , Pareto solution , Evolutionary algorithm , Discretization , Approximate
Approximate Pareto Optimal Solutions of Multi-objective Optimal Control Problems by Evolutionary Algorithms authors
Akbar Hashemi Borzabadi
School of Mathematics and Computer Science, Damghan University
Manije Hasanabadi
School of Mathematics and Computer Science, Damghan University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :