سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Application of Artificial Neural Network and multiple linear regression for modeling and sensitivity analysis of a stripper column

Publish Year: 1391
Type: Conference paper
Language: English
View: 1,537

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICNMO01_112

Index date: 9 March 2013

Application of Artificial Neural Network and multiple linear regression for modeling and sensitivity analysis of a stripper column abstract

There are many ways to produce the hydrogen. A way is through steam reforming. Because in this method CO2 presents as an impurity with hydrogen, hence CO2 should be removed. Since stripper column is keyequipment in purification process, thus, in this study, stripper column is modeled and investigated by artificial neural network as a technique of nonlinear modeling. The number of variables used for modeling is 5 and 2 as input and output variables, respectively. Next, in order to validate, this model compared with multiple linear regression (MLP) method. Determining the input effective variables on performance of thecolumn is the later purpose of results of this modeling. The results reveal that the ANN method is more powerful tool than MLP one to describe and predict the column. However, the major and minor input variable for both methods are analogous.

Application of Artificial Neural Network and multiple linear regression for modeling and sensitivity analysis of a stripper column Keywords:

Application of Artificial Neural Network and multiple linear regression for modeling and sensitivity analysis of a stripper column authors

H Sadeghialiabadi

Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran

N Saghatoleslami

Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
F. E. Cruz, S. D. O. Junior, Petroleum refinery hydrogen ...
C. S. Smith, W. J. McLeod, Hydrogen production, United States ...
Results of the Statistics Method ...
International Conference on Nonlinear Modeling & Optimization _ Aug. 2012, ...
F.O. Andersson, M. Aberg, S. P. Jacobson, Algorithm approaches for ...
H. Demuh and M. Beale, Neural Network Toolbox for Use ...
Ender, L .and R. M. Filho, Design of Multivariable Controller ...
S. L. Hung, C. Y. Kao and J. L. Lee, ...
] A. J. Maren, C. T. Harston, R. M. Pap, ...
W .J. Crowther, J. E. Cooper, Flight Test Flutter Prediction ...
J. Wang, W. Wan, Application of desirability function based _ ...
G. M. Alvarez, R, Babuska, fuzzy model for the prediction ...
نمایش کامل مراجع