Control Chart Patterns Recognition Using Fuzzy Rules and Improved Bees Algorithm
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,275
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICNMO01_150
Index date: 9 March 2013
Control Chart Patterns Recognition Using Fuzzy Rules and Improved Bees Algorithm abstract
Control charts primarily in the form of X chart are widely used to identify the situations when control actions will be needed for manufacturing systems. Various types of patternsare observed in control charts. Identification of these control chart patterns (CCPs) can provide clues to potential qualityproblems in the manufacturing process. This paper introduces a novel hybrid intelligent system that includes three main modules: a feature extraction module, a classifier module, and an optimization module. In the feature extraction module, a proper set combining the shape features and statistical features isproposed as the efficient characteristic of the patterns. In the classifier module, adaptive neuro-fuzzy inference system(ANFIS)-based classifier is proposed. For the optimization module, improved bees algorithm (IBA) is proposed to improve the generalization performance of the recognizer. In this module, it the ANFIS classifier design is optimized by searching for the best value of the parameter and looking for the best subset of features that feed the classifier. Simulation results show that the proposed algorithm has very high recognition accuracy. This high efficiency is achieved with only little features, which have been selected using IBA.
Control Chart Patterns Recognition Using Fuzzy Rules and Improved Bees Algorithm Keywords:
Control Chart Patterns Recognition Using Fuzzy Rules and Improved Bees Algorithm authors
Jalil Addeh
Babol University of Technology
Ata Ebrahimzadeh
Babol University of Technology, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :