Solving nonconvex quadratic optimization problems by neural networks
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,582
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICNMO01_287
Index date: 9 March 2013
Solving nonconvex quadratic optimization problems by neural networks abstract
In this paper, we propose a projection neural network model for solving a class of smooth nonconvex optimization problems where the feasible set is convex but the objective function is not convex. Compared with the existing neural network models for solving nonconvex quadratic problems, this neural network model canbe applied to solve problems that local optima need not be global optima. Simulation results are given to illustrate the global convergence and performance of the proposed model for nonconvex quadratic optimization problems with quadratic constraint
Solving nonconvex quadratic optimization problems by neural networks Keywords:
Solving nonconvex quadratic optimization problems by neural networks authors
Najmeh Hosseinipour-Mahani
Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :