Dynamic Web Document Classification in e-CRM Using Neuro-Fuzzy Approach
Publish place: 5th International Industrial Engineering Conference
Publish Year: 1386
Type: Conference paper
Language: English
View: 2,496
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
IIEC05_038
Index date: 13 November 2006
Dynamic Web Document Classification in e-CRM Using Neuro-Fuzzy Approach abstract
Internet technology enables companies to capture new customers, track their performances and online behavior, and customize communications, products, services, and price. The analysis of customers and customer interactions for electronic customer relationship management (e- CRM) can be performed by data-mining (DM), optimization methods, or combined approaches. Web mining is defined as the discovery and analysis of useful information from World Wide Web (WWW). Some of web mining techniques include analyses of user access patterns, web document clustering and classification. Most existing methods of classification are based on a model that assumes a fixed-size collection of keywords or key terms with predefined set of categories. This assumption is not realistic in large and diverse document collections such as World Wide Web. The researchers here propose a new approach to obtain category-keyword sets with unknown number of categories. On the basis of the training set of Web documents, the approach is used to classify test documents into a set of initial categories. Finally evolutionary rules are applied to these new sets of keywords and training documents to update the categorykeyword sets to realize dynamic document classification.
Dynamic Web Document Classification in e-CRM Using Neuro-Fuzzy Approach Keywords:
Dynamic Web Document Classification in e-CRM Using Neuro-Fuzzy Approach authors
Iraj Mahdavia
Mazandaran University of Science & Technology, Babol, Iran
Namjae Cho
The School of Business, Hanyang University, Seoul, Korea
Babak Shirazia
Iran University of Science & Technology , Tehran , Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :