Deep Learning Applications in Air Pollution Control: A Comprehensive Review

Publish Year: 1402
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 98

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

SMARTCITYC03_096

تاریخ نمایه سازی: 20 فروردین 1403

Abstract:

This study delves into the transformative role of deep learning and neural networks in the domain of air pollution control. By focusing on enhanced detection and monitoring, particularly through convolutional and recurrent neural architectures, the research highlights the potential of these technologies to unravel complex patterns within air quality dynamics. Beyond mere detection, these models demonstrate proactive capabilities, enabling the prediction and forecasting of pollution events. This foresight empowers the implementation of adaptive control strategies, effectively minimizing health risks and optimizing resource allocation. However, the study acknowledges challenges related to data quality and interpretability, emphasizing the necessity for interdisciplinary collaboration among machine learning experts, environmental scientists, and policymakers. In synthesizing these findings, the research contributes to the advancement of sustainable strategies for mitigating the impact of air pollution on human health and the environment and also review methods of controlling it by deep learning approaches.

Authors

Kiana Azimi

Caspian Faculty of Engineering, College of Engineering, University of Tehran, P. O. Box: ۱۱۹-۴۳۸۴۱, Rezvanshahr, Iran

Ehsan Ghiasy Nick

Caspian Faculty of Engineering, College of Engineering, University of Tehran, P. O. Box: ۱۱۹-۴۳۸۴۱, Rezvanshahr, Iran Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran

Ali Ahmadi Orkomi

Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Guilan, Rasht, Iran