Enhancing Emotion Classification via EEG Signal Frame Selection
Publish Year: 1403
Type: Journal paper
Language: English
View: 165
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JADM-12-1_007
Index date: 29 May 2024
Enhancing Emotion Classification via EEG Signal Frame Selection abstract
The classification of emotions using electroencephalography (EEG) signals is inherently challenging due to the intricate nature of brain activity. Overcoming inconsistencies in EEG signals and establishing a universally applicable sentiment analysis model are essential objectives. This study introduces an innovative approach to cross-subject emotion recognition, employing a genetic algorithm (GA) to eliminate non-informative frames. Then, the optimal frames identified by the GA undergo spatial feature extraction using common spatial patterns (CSP) and the logarithm of variance. Subsequently, these features are input into a Transformer network to capture spatial-temporal features, and the emotion classification is executed using a fully connected (FC) layer with a Softmax activation function. Therefore, the innovations of this paper include using a limited number of channels for emotion classification without sacrificing accuracy, selecting optimal signal segments using the GA, and employing the Transformer network for high-accuracy and high-speed classification. The proposed method undergoes evaluation on two publicly accessible datasets, SEED and SEED-V, across two distinct scenarios. Notably, it attains mean accuracy rates of 99.96% and 99.51% in the cross-subject scenario, and 99.93% and 99.43% in the multi-subject scenario for the SEED and SEED-V datasets, respectively. Noteworthy is the outperformance of the proposed method over the state-of-the-art (SOTA) in both scenarios for both datasets, thus underscoring its superior efficacy. Additionally, comparing the accuracy of individual subjects with previous works in cross subject scenario further confirms the superiority of the proposed method for both datasets.
Enhancing Emotion Classification via EEG Signal Frame Selection Keywords:
Electroencephalogram (EEG) , Common Spatial Pattern (CSP) , Transformer Encoder , Segmentation , Genetic Algorithm
Enhancing Emotion Classification via EEG Signal Frame Selection authors
Masoumeh Esmaeiili
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
Kourosh Kiani
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :