سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Artificial neural network technique for rainfall temporal distribu-tion simulation (‍‍Case study: Kechik region)

Publish Year: 1394
Type: Journal paper
Language: English
View: 102

This Paper With 8 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_CJES-13-1_006

Index date: 9 June 2024

Artificial neural network technique for rainfall temporal distribu-tion simulation (‍‍Case study: Kechik region) abstract

Artificial neural networks (ANNs) have become one of the most promising tools for rainfall simulation since a few years ago. However, most of the researchers have focused on rainfall intensity records as well as on watersheds, which generally are utilized as input records of other hydro-meteorological variables. The present study was conducted in Kechik station, Golestan Province (northern Iran). The normal multi-layer perceptron form of ANN (MLP–ANN) was selected as the baseline ANN model. The efficiency of GDX, CG and L–M training algorithms were compared to improve computed performances. The inputs of ANN included temperature, evaporation, air pressure, humidity and wind velocity in a 10 minute increment The results revealed that  the L–M algorithm was more efficient than the CG and GDX algorithm, so it was used for training six ANN models for rainfall intensity forecasting. The results showed that all of the parameters were proper inputs for simulating rainfall, but temperature, evaporation and moisture were the most important factors in rainfall occurrence.

Artificial neural network technique for rainfall temporal distribu-tion simulation (‍‍Case study: Kechik region) Keywords:

Artificial neural network technique for rainfall temporal distribu-tion simulation (‍‍Case study: Kechik region) authors

V. Gholami

University of Guilan

Z. Darvari

University of Mazandaran

M. Mohseni Saravi

University of Tehran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bustami, R., Bessaih, N., Bong, C.H. & Suhaili, S. (۲۰۰۷) ...
Chang, F.J., Chang, L.C. and Huang, H.L. (۲۰۰۲) Real-time recurrent ...
Cigizoglu, H.K. & Kisi, O. (۲۰۰۶) Methods to improve the ...
doi: ۱۰.۱۰۱۶/ j.jhydrol.۲۰۰۵.۰۵.۰۱۹ ...
Coulibaly, P.A. & Evora, N.D. (۲۰۰۷) Comparison of neural network ...
Crawford, N.H. & Linsley, R.K. (۱۹۹۶) Digital simulation in hydrology: ...
Hsu, K., Gupta. H.V., Sorooshian, S. & Imam, B. (۲۰۰۲) ...
Hu, T.S., Lam, K.C. & Ng, S.T. (۲۰۰۱) River flow ...
Imrie, C.E., Durucan, S. & Korre, A. (۲۰۰۰) River flow ...
Gholami, V., Mohseni Saravi, M. & Ahmadi, H. (۲۰۱۰) Effects ...
Golabi۱, M.R., Radmanesh, F., Mohammad Akhondali, A. & Kashefipoor, M. ...
Journal of computer science and engineering, ۵۵: ۱۳۰۳۹-۱۳۰۴۶ ...
Kisi, O. (۲۰۰۴) River flow modeling using artificial neural networks. ...
Kitanidis, P.K. & Bras, R.L. (۱۹۸۰a) Adaptive filtering through detection ...
Kitanidis, P.K. & Bras, R.L. (۱۹۸۰b) Real-time forecasting with a ...
Krzysztofowicsz, R. (۲۰۰۱) The case for probabilistic forecasting in hydrology. ...
Kumar, D.N., Raju, K.S. & Sathish, T. (۲۰۰۴) River flow ...
Legates, D.R. & McCabe, G.J. (۱۹۹۹) Evaluating the use of ...
Litta, A. J., Idicula, S.M. & Mohanty, U. C. (۲۰۱۳) ...
Luk, K.C., Ball, J.E. & Sharma, A. (۲۰۰۱) Anapplication of ...
Maier, H. & Dandy, G. (۲۰۰۰) Neural networks for the ...
Mazvimavi, D., Maijerink, A.M., Savenije, H. H. & Stein, A. ...
Olsson, J., Uvo, C.B., Jinno, K., Kawamura, A., Nishiyama, K., ...
Ramirez, M.C.P., Velho, H.F.C. and Ferreira, N.J. (۲۰۰۵) Artificial neural ...
Richard, M. and Gopal Rao, K. (۲۰۱۴) Artificial neural networks ...
Riad, S., Mania, J., Bouchaou,L. & Najjar, Y.(۲۰۰۴) Predicting catchments ...
Solaimani, K. & Darvari, Z. (۲۰۰۸) Suitability of Artificial Neural ...
نمایش کامل مراجع