Hydrodynamic simulation of spinning cone columns using artificial neural networks
Publish place: 2nd National Conference On Oil,Gas and petrochemicals
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,311
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
NCOGP02_353
Index date: 13 June 2013
Hydrodynamic simulation of spinning cone columns using artificial neural networks abstract
In this research the effect of tray speed, pressure drop and cone spacing for spinning cone columns have been examined using artificial neural network. To obtain this objective, Radial BasisFunction (RBF) neural network structure and least mean squares (LMS) training algorithm has beenutilized. The findings of this study reveal that the predictions of this work are much accurate than those obtained from the existing empirical correlation. There also exists a good compatibility between the pressure drop values predicted from the present study and the experimental data in wet state. From the scheme adopted in this work, the spinning cone column capacity at different operating conditions could be estimated more accurately than the existing correlations.
Hydrodynamic simulation of spinning cone columns using artificial neural networks Keywords:
Hydrodynamic simulation of spinning cone columns using artificial neural networks authors
Behrouz Niazmand
Department of chemical engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Mostafa Taherian
Department of chemical engineering, Ferdowsi University, Mashhad, Iran
Hamed Shabani
Department of chemical engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :