سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

An Efficient Combination of Genetic Algorithm and Population BalancesModeling for Prediction of Droplet/Particle Size in Inverse Suspension

Publish Year: 1403
Type: Conference paper
Language: English
View: 76

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ISPST16_476

Index date: 30 October 2024

An Efficient Combination of Genetic Algorithm and Population BalancesModeling for Prediction of Droplet/Particle Size in Inverse Suspension abstract

Controlling the particle size and its distribution is one of the crucial parameters to improve the hydrogel's efficacyin hemostasis and wound healing. To obtain an impressive and precise control of final particle size, it is essential toaddress a comprehensive evaluation. Cross-linked dextran microspheres' (CDMs) particle size behavior during theinverse suspension cross-linking process (SCP) was theoretically investigated. To carry out, a population balanceapproach was employed to predict the particle size and size distribution of CDMs in the SCP. Droplet breakage andcoalescence rates equations were incorporated into the population balance equation (PBE) to simplify the PBE.Moreover, tunable parameters for this particular system were optimized using Genetic Algorithm (GA). After that,the impact of agitation rate as a key factor on final particle size evolution was modeled well. Finally, a superbaccordance was observed between the modeling and empirical final particle size of CDMs with 50% dextran.

An Efficient Combination of Genetic Algorithm and Population BalancesModeling for Prediction of Droplet/Particle Size in Inverse Suspension Keywords:

An Efficient Combination of Genetic Algorithm and Population BalancesModeling for Prediction of Droplet/Particle Size in Inverse Suspension authors

Zeinab Yousef pour

Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, P.O.Box ۴۱۶, Babolsar, Iran

Hamed Salimi-Kenari

Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, P.O.Box ۴۱۶, Babolsar, Iran

Iman Esmaili Paeen Afrakoti

Department of Electrical Engineering, Faculty of Engineering and Technology University of Mazandaran,Babolsar, Iran