A Novel Hybrid Fuzzy Clustering Algorithm Based on Artificial Bee colony and C-means
Publish place: Congress on Electrical, Computer and Information Technology
Publish Year: 1392
Type: Conference paper
Language: English
View: 1,613
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
CECIT01_800
Index date: 5 September 2013
A Novel Hybrid Fuzzy Clustering Algorithm Based on Artificial Bee colony and C-means abstract
In this study a novel hybrid clustering algorithm is proposed that is based on Artificial Bee Colony (ABC) and Fuzzy C-means (FCM). When FCM is applied on high dimensional dataset, it usually results in local optimal partitioning. In this paper we address this problem and used a recently developed evolutionary technique named Artificial Bee Colony in combination to FCM. Hence, the name is Fuzzy C-means Bee (FCB) algorithm. The method can detect globally optimal cluster centeroids better than FCM as a most wildly used and popular clustering technique. To demonstrate performance of the proposed algorithm of FCM we used it for some standard dataset UCI datasets. The results show that FCB converge to global faster than FCM and ABC
A Novel Hybrid Fuzzy Clustering Algorithm Based on Artificial Bee colony and C-means Keywords:
A Novel Hybrid Fuzzy Clustering Algorithm Based on Artificial Bee colony and C-means authors
Mahdi Malaki
Electrical and Computer Engineering Department, Shahid Beheshti University, G. C., Tehran ۱۹۸۳۹۶۳۱۱۳, Iran
Fateme Sadeghi Ahangar
Sharif University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :