سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Fuzzy Maximum Capacity Path Problem and Its Application to Optimal Routing Control

Publish Year: 1403
Type: Journal paper
Language: English
View: 67

This Paper With 17 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJFS-21-4_008

Index date: 1 December 2024

Fuzzy Maximum Capacity Path Problem and Its Application to Optimal Routing Control abstract

The maximum capacity path problem (MCPP) is a classical combinatorial optimizationproblem that seeks to find a path with the maximum capacity in a network. Inthis paper, we consider a fuzzy extension of the MCPP, where the capacities are givenas arbitrary fuzzy numbers. Unlike previous approaches that rely on ranking functionsor specific orderings, we formulate the fuzzy MCPP as a bi-objective path-findingproblem, where one objective is to maximize the nominal capacity and the other is tooptimize the reliability value of the path. We propose an efficient algorithm that canfind a Pareto optimal path for any aggregation function between the two objectives.We also analyze the special case where the network is acyclic and show that the algorithmcan be specialized to run in strongly polynomial time. Furthermore, we presentan application of the fuzzy MCPP to the field of optimal control, where we use a discretizationalgorithm to transform a continuous routing problem into a discrete one andsolve it using the proposed algorithm as a subroutine. To implement this applicationin practice, we run the algorithm on an old real-world project in Iran called Iranrud.Moreover, we report some computational results on grid networks with different sizesthat illustrate the performance of the proposed algorithm.

Fuzzy Maximum Capacity Path Problem and Its Application to Optimal Routing Control Keywords:

Fuzzy Maximum Capacity Path Problem and Its Application to Optimal Routing Control authors

Javad Tayyebi

Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran.

Adrian Deaconu

Department of Mathematics and Computer Science, Transilvania University, Brasov, ۵۰۰۰۹۱, Romania.

Elham Hosseinzade

Department of Mathematics, Kosar University of Bojnord, Bojnord, Iran.

Amir Mohmmad Golmohammadi

Department of Industrial Engineering, Arak University, Arak, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
R. Ahuja, T. Magnanti, J. Orlin, Network flows: Theory, algorithms, ...
M. Akram, A. Habib, J. C. Alcantud, An optimization study ...
M. Akram, S. Shahzadi, S. M. U. Shah, T. Allahviranloo, ...
T. A. Almeida, V. N. Souza, F. M. S. Prado, ...
M. Bagheri, A. Ebrahimnejad, S. Razavyan, F. Hosseinzadeh Lotfi, N. ...
G. Baier, E. K¨ohler, M. Skutella, The k-splittable flow problem, ...
O. Berman, G. Y. Handler, Optimal minimax path of a ...
S. Broumi, P. K. Raut, S. P. Behera, Solving shortest ...
M. R. Bussieck, A. Meeraus, General algebraic modeling system (gams), ...
S. Chanas, W. Kolodziejczyk, Maximum flow in a network with ...
J. C. N. Cl´ımaco, M. M. B. Pascoal, J. M. ...
S. Dan, S. Majumder, M. B. Kar, S. Kar, On ...
A. Dey, S. Mondal, T. Pal, Robust and minimum spanning ...
A. Dey, A. Pal, Prim’s algorithm for solving minimum spanning ...
A. Dey, L. H. Son, A. Pal, H. V. Long, ...
S. Dhouib, S. Broumi, M. Talea, Solving the minimum spanning ...
D. Di Caprio, A. Ebrahimnejad, H. Alrezaamiri, F. J. Santos-Arteaga, ...
D. Dubois, H. Prade, Shortest path algorithms with fuzzy data ...
C. Dudeja, PSO based constraint optimization of intuitionistic fuzzy shortest ...
I. Dumitrescu, N. Boland, Algorithms for the weight constrained shortest ...
A. Ebrahimnejad, M. Enayattabr, H. Motameni, H. Garg, Modified artificial ...
J. Edmonds, R. M. Karp, Theoretical improvements in algorithmic efficiency ...
P. Erdos, A. R´enyi, On the evolution of random graphs, ...
H. N. Gabow, Scaling algorithms for network problems, Journal of ...
F. Hernandes, M. T. Lamata, M. T. Takahashi, A. Yamakami, ...
S. Hong, J. K. Hedrick, Roll prediction-based optimal control for ...
A. Iftar, E. J. Davison, A decentralized discrete-time controller for ...
A. A. Keller, Multi-objective optimization in theory and practice II: ...
W. Kolodziejczyk, The shortest spanning tree problem in a network ...
R. Kumar, S. Jha, R. Singh, A different approach for ...
A. Kumar, M. Kaur, An algorithm for solving fuzzy maximal ...
A. Kumar, M. Kaur, An improved algorithm for solving fuzzy ...
S. Majumder, B. Saha, P. Anand, S. Kar, T. Pal, ...
E. Q. V. Martins, J. L. E. Santos, An algorithm ...
D. Medhi, K. Ramasamy, Network routing: Algorithms, protocols, and architectures, ...
A. Mert, Defuzzification of non-linear pentagonal intuitionistic fuzzy numbers and ...
A. Mohammadi, J. Tayyebi, Maximum capacity path interdiction problem with ...
M. Parimala, S. Broumi, K. Prakash, S. Topal, Bellman–Ford algorithm ...
Z. Peng, M. Nikbakht, A. Ebrahimnejad, F. Hosseinzadeh Lotfi, T. ...
A. Plus, What is of construction of shipping canal linking ...
M. Pollack, The maximum capacity through a network, Operations Research, ...
A. P. Punnen, A linear time algorithm for the maximum ...
R. Ramaswamy, J. B. Orlin, N. Chakravarti, Sensitivity analysis for ...
J. Shekel, LINGO–A programming language for linear network analysis at ...
G. H. Shirdel, H. Rezapour, Time-varying maximum capacity path problem ...
J. Tayyebi, A. Mitra, J. A. Sefair, The continuous maximum ...
S. Tragoudas, The most reliable data-path transmission, IEEE Transactions on ...
Wikipedia contributors, Iranrud — Wikipedia, The Free Encyclopedia, (۲۰۲۳) [Online; ...
نمایش کامل مراجع