Investigating Shallow and Deep Learning Techniques for Emotion Classification in Short Persian Texts
Publish Year: 1402
Type: Journal paper
Language: English
View: 51
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADM-11-4_008
Index date: 31 December 2024
Investigating Shallow and Deep Learning Techniques for Emotion Classification in Short Persian Texts abstract
The identification of emotions in short texts of low-resource languages poses a significant challenge, requiring specialized frameworks and computational intelligence techniques. This paper presents a comprehensive exploration of shallow and deep learning methods for emotion detection in short Persian texts. Shallow learning methods employ feature extraction and dimension reduction to enhance classification accuracy. On the other hand, deep learning methods utilize transfer learning and word embedding, particularly BERT, to achieve high classification accuracy. A Persian dataset called "ShortPersianEmo" is introduced to evaluate the proposed methods, comprising 5472 diverse short Persian texts labeled in five main emotion classes. The evaluation results demonstrate that transfer learning and BERT-based text embedding perform better in accurately classifying short Persian texts than alternative approaches. The dataset of this study ShortPersianEmo will be publicly available online at https://github.com/vkiani/ShortPersianEmo.
Investigating Shallow and Deep Learning Techniques for Emotion Classification in Short Persian Texts Keywords:
Investigating Shallow and Deep Learning Techniques for Emotion Classification in Short Persian Texts authors
Mahdi Rasouli
Department of Computer Engineering, University of Bojnord, Bojnord, Iran.
Vahid Kiani
Department of Computer Engineering, University of Bojnord, Bojnord, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :