سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Study on Generative Adversarial Network in Discrete Data: A Survey

Publish Year: 1403
Type: Journal paper
Language: English
View: 76

This Paper With 16 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-12-4_009

Index date: 30 January 2025

Study on Generative Adversarial Network in Discrete Data: A Survey abstract

Generative Adversarial Networks (GANs) have emerged as a pivotal research focus within artificial intelligence due to their exceptional capabilities in data generation. Their ability to produce high-quality synthetic data has garnered significant attention, leading to their application in diverse domains such as image and video generation, classification, and style transfer. Beyond these continuous data applications, GANs are also being leveraged for discrete data tasks, including text and music generation. The distinct nature of continuous and discrete data poses unique challenges for GANs. In particular, generating discrete values necessitates the use of Policy Gradient algorithms from reinforcement learning to avoid the direct back-propagation typically used for continuous values. The generator must map latent variables into discrete domains, and unlike continuous value generation, this process involves subtle adjustments to the generator’s outputs to progressively align with real discrete data, guided by the discriminator. This paper aims to provide a thorough review of GAN architectures, fundamental concepts, and applications in the context of discrete data. Additionally, it addresses the existing challenges, evaluation metrics, and future research directions in this burgeoning field.

Study on Generative Adversarial Network in Discrete Data: A Survey Keywords:

Study on Generative Adversarial Network in Discrete Data: A Survey authors

Alireza Mohammadi Gohar

Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

Kambiz Rahbar

Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

Behrouz Minaei-Bidgoli

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Ziaeddin Beheshtifard

Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., ...
Vondrick, C., Pirsiavash, H., & Torralba, A. (۲۰۱۶). Generating videos ...
Donahue, C., Li, B., & Prabhavalkar, R. (۲۰۱۸, April). Exploring ...
Zhang, Z., Liu, S., Li, M., Zhou, M., & Chen, ...
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., ...
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., ...
Yang, Z., Chen, W., Wang, F., & Xu, B. (۲۰۱۷). ...
Arjovsky, M., Chintala, S., & Bottou, L. (۲۰۱۷, July). Wasserstein ...
Fedus, W., Rosca, M., Lakshminarayanan, B., Dai, A. M., Mohamed, ...
Nowozin, S., Cseke, B., & Tomioka, R. (۲۰۱۶). f-gan: Training ...
Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. ...
Bojar, O., Buck, C., Callison-Burch, C., Federmann, (۲۰۱۴). Findings of ...
Ehsani, K., Mottaghi, R., & Farhadi, A. (۲۰۱۸). Segan: Segmenting ...
Linguistic Data Consortium. (۲۰۱۸). Chinese-English LDC Dataset Linguistic Data Consortium. ...
Peters, J., & Bagnell, J. A. (۲۰۱۰). Policy Gradient Methods. ...
Hermann, K. M., Kocisky(۲۰۱۵). Teaching machines to read and comprehend. ...
Graff, David, and Christopher Cieri. "English Gigaword." Linguistic Data Consortium, ...
Yu, L., Zhang, W., Wang, J., & Yu, Y. (۲۰۱۷, ...
Zhang, C., Xiong, C., & Wang, L. (۲۰۱۹, August). A ...
Nie, Weili, Nina Narodytska, and Ankit Patel. "Relgan: Relational generative ...
Lin, K., Li, D., He, X., Zhang, Z., & Sun, ...
Yang, Y., Dan, X., Qiu, X., & Gao, Z. (۲۰۲۰). ...
Wu, Qingyang, Lei Li, and Zhou Yu. "Textgail: Generative adversarial ...
Xu, Can, Wei Wu, and Yu Wu. "Towards explainable and ...
Liu, Z., Wang, J., & Liang, Z. (۲۰۲۰, April). Catgan: ...
Chen, J., Wu, Y., Jia, C., Zheng, H., & Huang, ...
Alibasa, Muhammad Johan, Rizka Widyarini Purwanto, Yudi Priyadi, and Rosa ...
Li, Xinze, Kezhi Mao, Fanfan Lin, and Zijian Feng. "Feature-aware ...
Wu, L., Xia, Y., Tian, F., Zhao, L., Qin, T., ...
Yang, Z., Chen, W., Wang, F., & Xu, B. (۲۰۱۸). ...
Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., ...
Ahn, J., Madhu, H., & Nguyen, V. (۲۰۲۱). Improvement in ...
Mi, C., Xie, L., & Zhang, Y. (۲۰۲۰). Improving adversarial ...
Xia, LinJie, Zhengtao Yu, and Shengxiang Gao. "Chinese-Vietnamese cross-language topic ...
Srisurya, Ippatapu Venkata. "Neural Machine Translation using Adam Optimised Generative ...
Alonso, E., Moysset, B., & Messina, R. (۲۰۱۹, September). Adversarial ...
Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., ...
Li, Y., & Wu, B. (۲۰۲۰, June). Emotional dialogue generation ...
Olabiyi, Oluwatobi, Alan Salimov, Anish Khazane, and Erik T. Mueller. ...
Serban, Iulian, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, ...
Feng, S., Chen, H., Li, K., & Yin, D. (۲۰۲۰, ...
Chen, Xiuying, Mingzhe Li, Jiayi Zhang, Xiaoqiang Xia, Chen Wei, ...
Rekabdar, B., Mousas, C., & Gupta, B. (۲۰۱۹, January). Generative ...
Vo, Tham. "A novel semantic-enhanced generative adversarial network for abstractive ...
Barratt, S., & Sharma, R. (۲۰۱۸). A note on the ...
Bang, D., & Shim, H. (۲۰۱۸, July). Improved training of ...
Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, ...
Huszár, F. (۲۰۱۵). How (not) to train your generative model: ...
de Rosa, G. H., & Papa, J. P. (۲۰۲۱). A ...
Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., ...
Chen, Y., Pan, Y., Yao, T., Tian, X., & Mei, ...
Zhu, J. Y., Park, T., Isola, P., & Efros, A. ...
Kingma, D. P., & Welling, M. (۲۰۱۳). Auto-encoding variational bayes. ...
Mogren, O. (۲۰۱۶). C-RNN-GAN: Continuous recurrent neural networks with adversarial ...
Patel, S., Kakadiya, A., Mehta, M., Derasari, R., Patel, R., ...
Saito, Y., Takamichi, S., & Saruwatari, H. (۲۰۱۷). Statistical parametric ...
Sheather, S. J. (۲۰۰۴). Density estimation. Statistical science, ۵۸۸-۵۹۷ ...
Theis, L., Oord, A. V. D., & Bethge, M. (۲۰۱۵). ...
نمایش کامل مراجع