Spectral Characteristics Assessment in Recognition of Drivers' Drowsiness Using Statistical Tests

Publish Year: 1390
نوع سند: مقاله کنفرانسی
زبان: English
View: 699

This Paper With 5 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICBME18_074

تاریخ نمایه سازی: 27 فروردین 1393

Abstract:

One of the main causes of traffic accidents is drowsiness while driving. Since brain signal (EEG) can report the brain state and its activity momentarily and simultaneously, many researches have been focused on EEG signal for detecting the driver's alertness state. In this study, multichannel EEG signal was recorded from 10 volunteers when each person played a driving game in a virtual environment passing barriers in the game. These subjects should stay awake for at least 20 hours before the test. Process of recording signal for each subject during the driving game lasted about 45 minutes. After the preprocessing and manual labeling of gathered EEG data and extracting spectral features, using paired sample t-test we showed which of these frequency characteristics can create a significant difference up to 95% between alertness and drowsiness signals, and in the future studies can be used as indexes for drowsiness in order to increase the drivers' safety.

Authors

S.N Niri Ashtiani

M.Sc. student of Biomedical Engineering in Shahed University

Z Mardi

M.Sc. student of Biomedical Engineering in Shahed University

M Mikaili

assistant professor with the Biomedical Engineering Department, Shahed University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • classification of the level of sleepiness for the drowsy driving ...
  • C. T. Lin, R. C. Wu, Sh. F. Liang, W.H. ...
  • parameters by Support Vector Machine, " International Journal of ...
  • _ _ artificial neural network, " Medical Engincering & Physics, ...
  • based fuzzy neural networks, " IEEE, 2005. ...
  • neural Network and wavelet coefficients, " Expert Systems with Applications, ...
  • C. Papadelis, C. K. Papadeli, P. D. Bamidis, and I. ...
  • H. Yoshida, H. Kuramoto, Y. Sunada, and S. Kikkawa, "EEG ...
  • of _ lectroencepha lographic and e lectro -oculographic changes during ...
  • E. Michail, A. Kokonozi, I. Chouvarda, and N. Maglaveras, "EEG ...
  • neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy ...
  • on EEG", 30th Annual International IEEE EMBS Conf., Canada, August ...
  • relative power of drowsy subjects was significantly [15] _ _ ...
  • Peng Jun-iang, Wu Ping-dong, Yin Gang. "Exploring the characters of ...
  • sleep condition. As is shown in Fig. 4, the mean ...
  • sleep onset, the brain works with low activity and low ...
  • In this study, we have tried to introduce a new ...
  • recorded EEG data in a virtual driving environment and [6] ...
  • separately and by applying paired sample t-test we achieved [9] ...
  • نمایش کامل مراجع