Rule Selection by Guided Elitism Genetic Algorithm in Fuzzy Min-Max Classifier

Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 827

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICS12_254

تاریخ نمایه سازی: 11 مرداد 1393

Abstract:

Rule-based classification with Neural Networks has high acceptance ability for noisy data, high accuracy and is preferable in data mining. In this paper, we use Fuzzy Min-Max (FMM) Neural Network. Nevertheless the -Curse of Dimensionality- problem also exists in this classifier. As apossible solution, in this paper the modified GA is adopted tominimize the number of features in the extracted rules. Guided Elitism strategy is used to create elitism in thepopulation, based on information extracted from good individuals of previous generations. The main advantage ofthis data structure is that it maintains partial information ofgood solutions, which may otherwise be lost in the selection process. Five well-known benchmark problems are used toevaluate the performance of the proposed GEGA system; Results shows comparatively high accuracy and generally lower computational time.

Authors

Hadis Jalesiyan

Master student of Artificial Intelligence, Department of Computer Engineering, Mashhad Branch Islamic Azad University, Mashhad, Iran

Mahdi Yaghubi

Department of Computer Engineering, Mashhad Branch,Islamic Azad University, Mashhad, Iran

Mohammad.R Akbarzadeh.T

Center of Excellence on Soft Computing and Intelligent Information Processing Ferdowsi University of Mashhad, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • LAURO, C.N. AND F. PALUMBO, _ COMPONENT AN ALYSIS OF ...
  • GIOIA, F. AND C. LAURO, PRINCIPAL COMPONEN ANALYSIS OL INTERVAL ...
  • CAMPOS, P.G., ET AL. MLP NETWORKS FOR CLAS SIFICATION AND ...
  • XIUJU, F. AND W. LIpO. RULE EXTRACTION USING A NOVEL ...
  • ANDREWs, R. AND S. GEVA, RULE EXTRACTION FROM LOCAL CLUSTER ...
  • SIMPSON, P.K., _ MN-MAX NEURAL NETWORK, I. CLAS SIFICATIO. NEURAL ...
  • QUTESHAT, A., L. CHEE PENG, AND T. KAY SIN, A ...
  • USING DECISION TREE AND MULTIOB JECTIVE EV O LUT ION ...
  • ISHIBUCHI, H., T. Y AMAMOTO, AND T. NAKASHIMA, HYB RIDIZATION ...
  • HU, Y.-C., NONADDITIvf GREY SINGLE-LAYEf PERCEPTRON WITH CHCOQUET INTEGRAL FOR ...
  • CYBERNETICS, PART A: SYSTEMS AND HUMAN, IEEE TRANS ACTIONS ON, ...
  • AUGASTA, _ KATH IRV ALAV AKUMAR. RULE EXTRACTION FROM NEURAL ...
  • HAM, S.L. AND N. KWAK. B OOSTED-PCA FOR BIN ARY ...
  • SASIKALA, S. AND S.A.A. B ALAM URUGAN. DATA CLAS SIFICATION ...
  • BRUNZELL, H. AND J. ERIKSSON, FEATURE REDUCTION FOR PATTERN ...
  • EDALAT, I., ET AL. _ RULE EXTRACTION USING HYBRID EV ...
  • KABIR, M.M., M. SHAHJAHAN, AND K. MURASE, A NEW LOCAI ...
  • KOSHIYAMA, A.S., ET AL. GPF-CLASS A GENETIC _ MODEL FOR ...
  • MONTAZERI, M., ET AL. A NOVEL MEMETIC FEATURE SELECTION ALGORITHM ...
  • HAIJUN, L., ET AL. THE STUDY ABOUT FEATURE SELECTION Of ...
  • MATSUSHITA, S., T. FURUHASH, AND H. TSUTsUI. RULE EXTRACTION THROUGH ...
  • SARKAR, B.K., S.S. SANA, AND K. CHAUDHURI, A GENETIC ALG ...
  • RopRicGUEz, M., D.M. EsCALANTE, AND A. PEREGRiN, EFFICTENT DISTRIB UTED ...
  • S ENTHAMARA KANNAN, S. AND N. RAMARAJ, A NOVEL HYBRID ...
  • SIMPSON, P .K. _ MIN-MAX NEURAL NETWORK. TN NEURAL NETWORKS, ...
  • ISHIBUCH, H., T. MURATA, AND I.B. TURKSEN SELECTING LINGUISTIC CLAS ...
  • SATO, M. AND H. TSUKIMOTO. RULE EXTRACTION FROM NEURAL NETWORKS ...
  • SHENGXIANG, Y. AND S.N. JAT, GENETIC _ WITH GUDE) AND ...
  • LICHMAN, K.B.A.M. [UCI] MACHINE LEARNING _ 2013; AV AILABLE FROM: ...
  • PULKKINEN, P. AND H. KoIVISTO, _ CLASSIFIER IDENTIFIC ATION ...
  • نمایش کامل مراجع