Rule Selection by Guided Elitism Genetic Algorithm in Fuzzy Min-Max Classifier
Publish place: 12th Iranian Conference on Intelligent Systems
Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 827
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICS12_254
تاریخ نمایه سازی: 11 مرداد 1393
Abstract:
Rule-based classification with Neural Networks has high acceptance ability for noisy data, high accuracy and is preferable in data mining. In this paper, we use Fuzzy Min-Max (FMM) Neural Network. Nevertheless the -Curse of Dimensionality- problem also exists in this classifier. As apossible solution, in this paper the modified GA is adopted tominimize the number of features in the extracted rules. Guided Elitism strategy is used to create elitism in thepopulation, based on information extracted from good individuals of previous generations. The main advantage ofthis data structure is that it maintains partial information ofgood solutions, which may otherwise be lost in the selection process. Five well-known benchmark problems are used toevaluate the performance of the proposed GEGA system; Results shows comparatively high accuracy and generally lower computational time.
Keywords:
Rule extraction , Dimensionality Reduction , Genetic Algorithm (GA) , Guided Search (GS) , Fuzzy Min- Max Neural Network
Authors
Hadis Jalesiyan
Master student of Artificial Intelligence, Department of Computer Engineering, Mashhad Branch Islamic Azad University, Mashhad, Iran
Mahdi Yaghubi
Department of Computer Engineering, Mashhad Branch,Islamic Azad University, Mashhad, Iran
Mohammad.R Akbarzadeh.T
Center of Excellence on Soft Computing and Intelligent Information Processing Ferdowsi University of Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :