Dynamic Economic Dispatch Solving in Power Systems Using Imperialist Competitive Algorithm
Publish place: The Second International Conference on Intelligent Information Networks and Complex Systems
Publish Year: 1393
Type: Conference paper
Language: English
View: 1,099
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
IINC02_010
Index date: 14 April 2015
Dynamic Economic Dispatch Solving in Power Systems Using Imperialist Competitive Algorithm abstract
The dynamic economic dispatch (DED) problem is an extension of the conventional static load dispatch problem in the context of electrical power generation. In this paper,issues related to the implementation of the several soft computing techniques are highlighted for a successful application to solve dynamic economic dispatch (DED)problem, which is a constrained optimization problem in power systems. First of all, a survey covering the basics of thetechniques is presented and then implementation of the techniques in the DED problem is discussed. The soft computing techniques, namely multi-layered perceptronneural network (MLP NN), genetic algorithm (GA), Imperialist Competitive Algorithm(ICA), particle swarm(PSO) and are applied to solve the DED problem. The Evolutionary Algorithms are tested on power system consisting 3 generating units and the results are compared together. Suggestion is presented to improve techniques
Dynamic Economic Dispatch Solving in Power Systems Using Imperialist Competitive Algorithm Keywords:
Dynamic Economic Dispatch Solving in Power Systems Using Imperialist Competitive Algorithm authors
Reza Samadi
M.Sc. Student of Computer Engineering Islamic Azad University-Ferdows Branch Ferdows, Iran
Javad Hamidzadeh
Faculty of Computer Engineering and Information Technology Sadjad University of Technology Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :