An analytical investigation of ductile moment -resisting connections using cold-formed steel sections
Publish place: 10th International Congress on Civil Engineering
Publish Year: 1394
Type: Conference paper
Language: English
View: 1,526
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICCE10_0749
Index date: 10 July 2015
An analytical investigation of ductile moment -resisting connections using cold-formed steel sections abstract
This paper presents an investigation on the potential use of cold-formed steel sections (CFS sections) in moment-resisting frames (MRFs) for seismic applications. The main limitation of CFS sections is the low out-of-plane stiffeners of their thin-walled elements which leads to low ductility. In earthquake resistant MRFs, the beams are designed to provide considerable ductility, whereas the other elements are mainly limited to their elastic range. The proposed beam–column connections are used to connect innovative column which has box section and double back-to-back C-shape beam. In web bolted connections without out-of-plane stiffeners, premature web buckling results in early loss of strength, while some kinds of stiffeners can improve the performance of connections. The behaviour of CFS beam–column connections is studied by means of finite element analysis (FEA). The results of the analyses show optimum stiffeners which can postpone local buckling, and they increase dramatically the level of resistant moment.
An analytical investigation of ductile moment -resisting connections using cold-formed steel sections Keywords:
An analytical investigation of ductile moment -resisting connections using cold-formed steel sections authors
Mohammad Zaman Kabir
Department of Civil and Environmental Engineering, Amir Kabir University of Technology, Tehran,Iran
Seyed Mohammad Mojtabaei
Department of Civil and Environmental Engineering, Amir Kabir University of Technology, Tehran,Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :