سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A new multiclass embedded feature selection method using genetic algorithm

Publish Year: 1393
Type: Conference paper
Language: English
View: 816

This Paper With 6 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICEEE06_339

Index date: 23 September 2015

A new multiclass embedded feature selection method using genetic algorithm abstract

In this paper, we propose an embedded subset selection method based on minimum redundancy–maximum relevance criterion, which uses Pierson's correlation coefficient criterion in redundancy and accuracy of nearest neighbor classification in relevancy. In this method first some features with low sensitivity are eliminated then remainder of original feature subset is used in subset selection process which uses genetic algorithm. Sensitivity of features shows correlation of each feature with target. The proposed method is tested over several well-known benchmarking datasets. The performance of the proposed algorithm is also compared with some recent hybrid filter–wrapper algorithms. The results show that this method is competitive in terms of both classification accuracy and the number of selected features.

A new multiclass embedded feature selection method using genetic algorithm Keywords:

A new multiclass embedded feature selection method using genetic algorithm authors

Soheila Barchinezhad

Department of Electronic and Computer Kerman Graduate University of Advanced Technology Kerman, Iran

Mahdi Eftekhari

Department of Computer Engineering Shahid Bahonar University of Kerman Kerman, Iran

Farzane Foroutan

Department of Computer Engineering Shahid Bahonar University of Kerman Kerman, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
M. Kabir, and M. Islam, _ Wrapper feature selection approach ...
Blogreg Proposed method 79.63 41.30 60.00 53.41 64.79 76.19 62.86 ...
th Iranian Conference On Electrical and Electronics Engineering (ICEEE 2014) ...
Islamic Azad University Gonabad Branch August 19, 20, 21 - ...
learning regression algorithms, " Int. J. Appl. Math. Comput. Sci, ...
W. J. Conover, and R. L. Iman, -Ra Transformation _ ...
M. Friedman, Fhe use of ranks to avoid the assumption ...
framework, " Journal of Multiple- Valued Logic and Soft Computing, ...
Expert Systems with Applications, vol. 38, no. 4, pp. 4600-4607, ...
Z. Zhao et al., -Avancing feature selection research, " ASU ...
c lassification Systems, 2012. ...
T. M. Hamdani et al., Hierarchical genetic algorithm with new ...
Fheoretical and empirical analysis of ReliefF and RReliefF, ; Machine ...
A. Popov, _ algorithms for optimization, " User Manual, Hamburg, ...
M. A. Hall, -Crre lation-based feature selection for machine learning, ...
G. C. Cawley, N. L. Talbot, and M. Girolami, sparse ...
G. C. Cawley, and N. L. Talbot, Gene selection in ...
University _ Califormia, " Department of Information and Computer Science, ...
th Iranian Conference _ Electrical and Electronics Engineering (ICEEE2014) ...
Islamic Azad University Gonabad Branch August 19, 20, 21 - ...
نمایش کامل مراجع