Effect of trailing edge thickness variations on flow parameters in hydraulic turbines
Publish Year: 1394
Type: Conference paper
Language: English
View: 637
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
NRIME01_265
Index date: 16 February 2016
Effect of trailing edge thickness variations on flow parameters in hydraulic turbines abstract
Hydropower is one of the most important renewable sources of the world‟s electricity supply and there is still a considerable untapped potential in many areas. Hydro turbines are grouped under two main categories; Impulse turbines (e.g. Pelton and Turgo turbines) and Reaction turbines (e.g. Francis, Kaplan and Bulb turbines). The Francis turbine is used where a large flow and a high or medium head of water is involved. The water enters hydraulic turbines is subjected to changes in pressure and velocity. Such variations may result in changes in flow characteristics with consequences on turbine performance and useful life.The main objective of the present study is to investigate the effect of trailing edge thickness (h) variations on flow parameters in Francis turbines. To aim this purpose, velocity magnitude, turbulent kinetic energy, and turbulent Intensity for six various trailing edge thicknesses (i.e. between 0.8h and 1.5h) for Francis turbine runners are considered using CFD simulations.Keywords: Trailing Edge Thickness, Velocity Magnitude, Turbulent Kinetic Energy, Turbulent Intensity.
Effect of trailing edge thickness variations on flow parameters in hydraulic turbines Keywords:
Effect of trailing edge thickness variations on flow parameters in hydraulic turbines authors
Kh. Hemmatpour
Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Arak
S. Jafari Mehrabadi
Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Arak
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :