Speech Enhancement by Wavelet Denoising Using Spectral Subtraction
Publish Year: 1384
Type: Conference paper
Language: English
View: 2,769
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICIKT02_032
Index date: 2 January 2008
Speech Enhancement by Wavelet Denoising Using Spectral Subtraction abstract
In this paper, we propose a new approach for speech enhancement. The proposed method for removing the noise components is a combination of two methods: Wavelet de-noising and spectral subtraction. The idea is to apply the spectral subtraction to the wavelet approximations and details coefficients. The spectral subtraction algorithm is modified through the new algorithm by modification of some parameters including a new parameter for spectral subtraction in unvoiced speech frames which is introduced and the existing power factor in spectral subtraction method which is improved. Also, for reduction of musical noise, we propose to use iterative filtering of noises which can remove the musical noise, sufficiently. Experimental results on a large number of noisy signals and comparisons between four algorithms demonstrate that the proposed speech enhancement algorithm is promising.
Speech Enhancement by Wavelet Denoising Using Spectral Subtraction Keywords:
Speech Enhancement by Wavelet Denoising Using Spectral Subtraction authors
Yasser Ghanbari
Department of Electrical Engineering, University of Mazandaran, Babol, Iran
Mohammad Reza Karami
Department of Electrical Engineering, University of Mazandaran, Babol, Iran
Mojtaba Lotfizad
Department of Electrical Engineering, Tarbiat Modares University, Tehran, Iran
Hosein Sameti
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :