سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Combination of ReliefF Algorithm with Decision Tree in Credit Scoring

Publish Year: 1393
Type: Conference paper
Language: English
View: 809

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

CITCONF02_515

Index date: 8 May 2016

Combination of ReliefF Algorithm with Decision Tree in Credit Scoring abstract

Today's financial transactions have increased with banks and financial institutions. Attempts to find a credit scoring model with high accuracy has become a competition between financial institutions. We have created 9 different models for the credit scoring of customers by combining three methods of feature selection and three decision tree methods. The model is implemented on three dataset and we compare the accuracy of the models. The two datasets choose from the UCI (Australian dataset, German dataset) and a given dataset is a car leasing company in Iran. In this paper we combine ReliefF algorithm as feature selection methods with decision tree learning algorithm ID3, C45 and CART. The proposed methods is described and compared based on classification accuracy and type I and II error rate. Results compare with classification models without feature selection algorithm, too. Results show that using feature selection methods with decision tree algorithm build more accurate models.

Combination of ReliefF Algorithm with Decision Tree in Credit Scoring Keywords:

Combination of ReliefF Algorithm with Decision Tree in Credit Scoring authors

Zahra Davoodabady

Computer Eng. Department, Shahab-e-Danesh Institute of Higher Education, Qom, Iran

Ali Moeini

Algorithms and Computations Department, University of Tehran, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Lee, T. S., Chiu, _ C., Chou, Y. C. and ...
Ong, C. S., Huang, J. J. and Tzeng, G. H. ...
Timofeev R (20 03): "classification and regression trees theory and ...
Zurada, J. and Kunene, N (201 0): "Performance Assessment of ...
Quinlan, J.R. (1986): "Induction of Decision Trees" Machine Learning, 1, ...
Quinlan, J.R. (1993):C4.5: Programs for Machine Learning. San Francisc, Morgan ...
Quinlan, J.R. (1996): "Improved use of continuous attributes in c4.5" ...
Breiman, L. (1984): Classification and Regression Trees. London: Chapman & ...
Saeys, Y., Inza, I. and Larranaga, P. (2007): _ review ...
1. Robnik-Sikonj a, M. and Kononenko, I. (2003): "Theoretical and ...
Kira, K. and Rendell . A. (1992): _ practical approach ...
I. Kononenko, "Estimating attributes: Analysis and extensions of Relief". In ...
4. Kandaswamy, K. K., Pugalenthi, G.. Hazrati, M. K., Kalies, ...
Yang, F., Cheng, W., Dou, R. and Zhou, N (2011) ...
West, D. (2000): "Neural Network Credit Scoring Models" Computers and ...
نمایش کامل مراجع