A Novel Method for Location and Capacity Optimization of DGsBased on GA/IWD
Publish place: کنفرانس بین المللی مهندسی و علوم کاربردی
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 828
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEASCONF01_121
تاریخ نمایه سازی: 9 مرداد 1395
Abstract:
Distributed generation (DG) into an electric radial distribution network has an overall positive impact on the system. The power injections fromrenewable DG sources located close to the load centers provide a chance for system power loss reduction, cost reduction; voltage profileimprovement; voltage stability improvement; environmental friendliness, postponement system upgrading and increasing reliability.The intelligent water drops (IWD) algorithm is a new swarm-based optimization algorithm inspired by observing natural water drops thatflow in rivers. In this paper, a novel combined Genetic Algorithm (GA) / Intelligent Water Drops (IWD) is presented for optimal location andsizing of DG on distribution systems. The objective is to minimize network power losses, better voltage regulation and improve the voltagestability within the framework of system operation and security constraints in radial distribution systems. A detailed performanceanalysis is carried out on 33bus system to demonstrate the effectiveness of the proposed methodology.
Keywords:
Authors
Shabnam Ruzbehi
Department of Electrical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Ehsan Amiri
Department of Electrical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Mohammad Abedini
Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
Reza Alimoradi
Department of Electrical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :