سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

طبقه بندی کلان داده های نامتعادل با استفاده از الگوریتم جنگل تصادفی

Publish Year: 1394
Type: Conference paper
Language: Persian
View: 1,565

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ITCC02_269

Index date: 11 September 2016

طبقه بندی کلان داده های نامتعادل با استفاده از الگوریتم جنگل تصادفی abstract

با افزایش رو به رشد نمایی داده ها و حجم بزرگی از آنها که به وجود آمده است، روز به روز نیاز به پررداز وتحلیل این داده های کلان بیشتر میشود. طبقه بندی داده ها، شکلی از تحلیل داده ها تلقی می شود، که در آنمدل هایی جهت توصیف کلاسهای مهمی از داده ها استخراج می شود . یکی از اهداف اصلی در طبقه بندیداده ها رسیدن به صحت بالاست و یکی از متدها برای رسیدن به این هدف استفاده از یادگیری تلفیقی است .جنگل تصادفی به عنوان درخت تصمیم تلفیقی شناخته می شود و کارایی خوبی هم در طبقه بندی داده های کلاندارد. طبقه بندی مجموعه داده های نامتعادل چالشی را برای اکثر تکنیک های یادگیری استاندارد به وجود آوردهاست و الگوریتم جنگل تصادفی هم تحت تاثیر مندی توزیع کلاس نامتعادل قرار گرفته است. در این کار، ازمتد SplitBal که روشی جدید در ایجاد تعادل داده های نامتعادل می باشد، برای متعادل سازی داده های کلاننامتعادل استفاده گردیده است و در نهایت کار طبقه بندی این نوع داده ها را با کمک الگوریتم جنگل تصادفیانجام داده ایم. نتایج این کار در مقابل کارهای انجام شده از جمله نمونه زدایی تصادفی و نمونه افزایی تصادفی وروش حساس به هزینه نتایجی بهتر در زمان اجرا و کارایی طبقه بندی را در بعضی از نگاشت کننده ها نشان می -دهد که مزیت این روش در مقابل دیگر روش ها نداشتن سربار و از دست دادن داده های مدید است. در این کاراز روش ارزیابی میانگین هندسی برای مقایسه روش پیشنهادی نسبت به روش های دیگر استفاده شده است.

طبقه بندی کلان داده های نامتعادل با استفاده از الگوریتم جنگل تصادفی Keywords:

طبقه بندی کلان داده های نامتعادل با استفاده از الگوریتم جنگل تصادفی authors

وحید فاضلی نیا

دانشجوی کارشناسی ارشد، کامپیوتر نرمافزار، دانشگاه بین المللی امام رضا (ع)، مشهد، ایران

عادل قاضی خانی

عضو هیئت علمی، کامپیوتر نرمافزار، دانشگاه بین المللی امام رضا (ع)، مشهد، ایران

پوریا محمدعلمی

دانشجوی کارشناسی ارشد، کامپیوتر نرمافزار، دانشگاه بین المللی امام رضا (ع)، مشهد، ایران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bache K., Lichman M., (2013) UCI Machine Learning Repository, <http ...
Chen, M., Mao, S., & Liu, Y. (2014). Big data: ...
del Rio, S., Lopez, V., Benitez, J. M., & Herrera, ...
Diez-Pastor, J. F., Rodriguez, J. J., Garcia-Osorio, C. I., & ...
Galar, M., Fernandez, A., Barrernechea, E., & Herrera, F. (2013). ...
=http ://cwiki _ apache _ org/confluenc e/di sp _ ay/MAH ...
Han, J., Kamber, M., & Pei, J. (2011). Data mining: ...
Liu, X. (2014). An Ensemble Method for Large Scale Machine ...
Lopez, V, del Rio, S. Benitez, J. M., & Herrera, ...
Marx, V. (2013). Biology: The big challenges of big data. ...
" Intcrma1ionl Confcrcncc _ _ Confcrcncc on Ncw Tcchnologics Application ...
Sun, Z., , Song, Q., Zhu, X, Sun, H., Xu, ...
Wu, _ Zhu, X., Wu, G. Q., & Ding, W. ...
Zhang, C., & Ma, Y. (2012). Ensemble Machine Learning. Springer. ...
نمایش کامل مراجع

مقاله فارسی "طبقه بندی کلان داده های نامتعادل با استفاده از الگوریتم جنگل تصادفی" توسط وحید فاضلی نیا، دانشجوی کارشناسی ارشد، کامپیوتر نرمافزار، دانشگاه بین المللی امام رضا (ع)، مشهد، ایران؛ عادل قاضی خانی، عضو هیئت علمی، کامپیوتر نرمافزار، دانشگاه بین المللی امام رضا (ع)، مشهد، ایران؛ پوریا محمدعلمی، دانشجوی کارشناسی ارشد، کامپیوتر نرمافزار، دانشگاه بین المللی امام رضا (ع)، مشهد، ایران نوشته شده و در سال 1394 پس از تایید کمیته علمی دومین کنفرانس بین المللی و سومین همایش ملی کاربرد فناوری های نوین در علوم مهندسی پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله کلان داده ها، نگاشت کاهش، مجموعه داده های نامتعادل، یادگیری تلدیقی،جنگل تصادفی هستند. این مقاله در تاریخ 21 شهریور 1395 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 1565 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که با افزایش رو به رشد نمایی داده ها و حجم بزرگی از آنها که به وجود آمده است، روز به روز نیاز به پررداز وتحلیل این داده های کلان بیشتر میشود. طبقه بندی داده ها، شکلی از تحلیل داده ها تلقی می شود، که در آنمدل هایی جهت توصیف کلاسهای مهمی از داده ها استخراج می شود . یکی از ... . برای دانلود فایل کامل مقاله طبقه بندی کلان داده های نامتعادل با استفاده از الگوریتم جنگل تصادفی با 12 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.