Regulating PID Optimal Gains Using Particle Swarm Optimization Algorithm long with Mutation Operator and Genetic Algorithm
Publish place: The Second International Conference and the Third National Conference on the Application of New Technologies in Engineering Sciences
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 687
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCC02_393
تاریخ نمایه سازی: 21 شهریور 1395
Abstract:
Hydraulic turbine regulator systems are among the most important components of any hydroelectric power plant, and play a vital role in securing the economic performance of the hydroelectric installations. Currently, normal PID controllers are employed extensively in these systems, the main disadvantage of which is, given the control rule, that it provides no information regarding how one can regulate the parameters optimally. In this paper, these parameters are regulated using Genetic Algorithm (GA) and the combined algorithm of Particle Swarm Optimization-Mutation (PSO-Mutation) algorithm in order to solve the problem of PID gains in hydraulic turbine systems. The results of the simulation of these two algorithms, compared to that of Improved Particle Swarm Optimization (IPSO) algorithm, show that the combined algorithm (PSO-Mutation) has led to the removal of the tipping point and the reduction of settlement and error squares. In fact, a more desirable response is achieved and finally, the accuracy of controlling the hydraulic turbine speed is increased and this has led to an increase in production efficiency in comparison to other two algorithms.
Keywords:
Genetic Algorithm (GA) , Hydraulic Turbine , Mutation , Optimization , Particle Swarm Optimization (PSO) Algorithm , PID Controller
Authors
Soolmaz Amini
M.S student, Department of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Hojatollah Hamidi
Assistance Professor, Department of IT Engineering, Khajeh Nasir Toosi University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :