Control of Depth of Anesthesia affected by Variable Heart Beat Rate with a Neuro-Fuzzy Model Predictive Controller
Publish place: کنفرانس بین المللی مهندسی برق
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 940
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICELE01_467
تاریخ نمایه سازی: 21 شهریور 1395
Abstract:
Anesthesia is a vital process because anesthetic drugs must be delivered at a proper rate to prevent over dosing and under dosing in patients which can be dangerous for them. So, this process needed to be automatic as the same as other processes. In this study, we use a neuro-fuzzy predictive controller to control the process of anesthesia. pharmacokinetic-pharmacodynamic model is used to describe relationship between input anesthetic agents and output patient endpoint variables. Propofol and remifentanil are used as inputs of the system. Bispectral index (BIS) as a criterion for the patient’s DOA is used as the output of the system. Investigation of the influence of uncertainty due to variable heart rate on the patient's DOA is one objective of this study. Some constraints are considered in the cost function which are important in calculating administrative drug dosage. With MATLAB software, neuro-fuzzy predictive controller is applied on a virtual set of patients with different parameters and we compare the results with the results of the conventional PID controller. Finally, experiments with irregular variable heart rate are done only on nominal patient. Neuro-fuzzy predictive controller controls the process better
Keywords:
Neuro-fuzzy predictive control , Identification , Depth of Anesthesia (DOA) , Anesthesia , Bispectral index (BIS) , Compartmental model (PKPD) , Variable heart rate
Authors
Abed Bahraman
Department of Mechatronics Faculty of Electrical and Computer Engineering, Islamic Azad University, Tehran, Iran
Mojtaba Ahmadieh Khanesar
Department of Electrical and Control Engineering, Semnan University, Semnan, Iran
Mohammad Teshnehlab
Electrical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :