Reverse Converter Design For Cryptographic Applications With High Dynamic Range
Publish Year: 1395
Type: Conference paper
Language: English
View: 497
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
IRCEM01_202
Index date: 15 December 2016
Reverse Converter Design For Cryptographic Applications With High Dynamic Range abstract
The Residue Number System (RNS) is the display system that prepares fast andparallel computing. The cryptography systems use vastly of RNS in its applications. In thisResearch, we consider the proposed 5-moduli set {24n ,24n+ 1,22n +1,2n +1,2n -1} forincreasing large dynamic range (DR) RNS efficiently. This moduli set includes of simple andwell-formed moduli where can terminate in efficient implementation of the reverse converter,And uses of the New Chinese Remainder Theorem 1(New CRT 1) for deriving its residue toa binary converter namely reverse converter.We introduce simple hardware implementation of its reverse converter, which ismainly constructed of five Carry Save Adders (CSA), a 8n bit modulo 28n-1 adder, andsome of gates. We compare the performance and hardware efficiency of our reverse converterwith the reverse converter of the moduli set {28n +1,24n+ 1,22n+ 1,2n +1,2n -1} in the samedynamic range, and also we prove that proposed reverse converter gets speed increase andhardware savings of 39%, 45% respectively.
Reverse Converter Design For Cryptographic Applications With High Dynamic Range Keywords:
Reverse converter , residue arithmetic , Computer arithmetic , Residue number system (RNS) , New Chinese remainder theorems (New CRT 1)
Reverse Converter Design For Cryptographic Applications With High Dynamic Range authors
Sedighe Yari
Department of Computer Engineering Science and Research Branch, Faculty of Sciences, IslamicAzad University Kerman, Iran
Amir Sabbagh Molahosseini
Department of Computer Engineering Kerman Branch, Islamic Azad University Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :