سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

ارتقاء دقت طبقهبندی تلفیق دادههای راداری و اپتیکی مبتنی بر الگوریتم نوین MICO-SR

Publish Year: 1395
Type: Conference paper
Language: Persian
View: 753

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICINH01_241

Index date: 24 January 2017

ارتقاء دقت طبقهبندی تلفیق دادههای راداری و اپتیکی مبتنی بر الگوریتم نوین MICO-SR abstract

در این مقاله الگوریتم نوین SR-MICO به منظور ارتقاء دقت طبقهبندی مبتنی بر تلفیق دادههای نوین راداری و اپتیکی -SENTINEL 1 و 2-SENTINEL معرفی و پیشنهاد میگردد. این الگوریتم قادر است پس از تصحیح همپوشانی دامنه روشنایی در تصاویر، آموزش و p,L2 انجام دهد. لذا پس انتخاب نظارت شده ویژگیهای استخراج شده از تصاویر را با استفاده از الگوریتم نظم دهی تنک مبتنی بر norm- از تصحیح همپوشانی دامنه روشنایی در تصاویر مبتنی بر الگوریتم تعدیل مولفههای ذاتی تصویر، ویژگیهای مهمی همچون ویژگیهای حاصل از فاکتورگیری ماتریس نامنفی (NMF (و ویژگیهای بافتی حاصل از ماتریس هم رخداد درجات خاکستری (GLCM ،(تبدیل موجک و فیلتر گابور از تصاویر استخراج میگردد. پس از بازسازی چند فضای ویژگی با ترکیب ویژگیهای فوق الذکر، بهینه سازی ماتریس ویژگیها مبتنی بر نظم دهی تنک انجام میشود. نتایج نشان میدهد که بکارگیری ماتریس ویژگیهای بهینه حاصل از الگوریتم پیشنهادی SR-MICO بعنوان ورودی طبقهبندی5 RoF باعث بهبود قابل توجهی در نتایج طبقهبندی تلفیق دادههای راداری و اپتیکی شده است.

ارتقاء دقت طبقهبندی تلفیق دادههای راداری و اپتیکی مبتنی بر الگوریتم نوین MICO-SR Keywords:

تلفیق دادههای راداری و اپتیکی , تعدیل مولفههای ذاتی تصویر , آموزش نظارت شده ویژگیها , فیلتر گابور , NMF , .SENTINEL

ارتقاء دقت طبقهبندی تلفیق دادههای راداری و اپتیکی مبتنی بر الگوریتم نوین MICO-SR authors

دانیا کریمی

دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز،

کاظم رنگزن

دانشیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز ،

غلامرضا اکبری زاده

استادیار گروه برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز

مصطفی کابلی زاده

استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز ،

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
ابراهیمی نیا، علیرضا، هل فروش، محمدصادق. و دانیالی، حبیب اله.، ...
Aach, T., Kaup, A., Mester, R., :On texture analysis: Local ...
Akbarizadeh, G. (2012). A new statistical-bas ed kurtosis wavelet energy ...
Cao, Z., Feng, J., Min, R. Pi, Y., (20 12), ...
- Chang, Y. _ Chun Wang, Y., Fu, Y., Han, ...
Donga, T., Liua, J. Qiana, B. Zhaoa, T. Jinga, Q. ...
Fukuda, S. and Hirosawa, H., (1999), A wavelet-based texture feature ...
Gevaert, C. M. Suomalainen, J. Tang, J. and Kooistra, L. ...
Gou S.P., Chen P.J., Yang X.Y., Jiao L.C., (2008), Image ...
Haralick, R., Shanmugan and Dinstein, I., (1973), Texturan Features for ...
Li, C., Huang, R., Ding, Z., Gatenby, C., Metaxas, D. ...
Masaeli, M., Dy, J. G., and Fung, G. M., (2010). ...
PourEbtehaj, Z. _ Ramac handram, D., (2013), Automatic Target Recognition ...
Paatero, P. Tapper, U., (1994), Positive matrix factorization: A non-negative ...
Rahmani M., and Akbarizadeh, G., (2015), Unsupervised feature learning based ...
Robnik-Sikonj a M., and Kononenko, I., (2003), Theoretical and empirical ...
Tao, H., Hou, C., Nie, F., Jiao, Y., and Yi, ...
Tappen, M., Freeman, W. and Adelson, E., (2005), Recovering intrinsic ...
Tao and S. Auer, (2015), S imulation-B ased Building Change ...
Weiss, Y., (2001), Deriving intrinsic images from image sequences, Proc. ...
Wells W. M., Grimson W. E. L., Kikinis R. and ...
Zhang, X., Jiao, L., Liu, F., Bo, L. and Gong, ...
Zhang, H., Lin, H., Li, Y., (2015), Impacts of Feature ...
نمایش کامل مراجع

مقاله فارسی "ارتقاء دقت طبقهبندی تلفیق دادههای راداری و اپتیکی مبتنی بر الگوریتم نوین MICO-SR" توسط دانیا کریمی، دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز،؛ کاظم رنگزن، دانشیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز ،؛ غلامرضا اکبری زاده، استادیار گروه برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز؛ مصطفی کابلی زاده، استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز ، نوشته شده و در سال 1395 پس از تایید کمیته علمی اولین کنفرانس بین المللی مخاطرات طبیعی و بحران های زیست محیطی ایران، راهکارها و چالش ها پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله تلفیق دادههای راداری و اپتیکی، تعدیل مولفههای ذاتی تصویر، آموزش نظارت شده ویژگیها، فیلتر گابور، NMF ،.SENTINEL هستند. این مقاله در تاریخ 5 بهمن 1395 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 753 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که در این مقاله الگوریتم نوین SR-MICO به منظور ارتقاء دقت طبقهبندی مبتنی بر تلفیق دادههای نوین راداری و اپتیکی -SENTINEL 1 و 2-SENTINEL معرفی و پیشنهاد میگردد. این الگوریتم قادر است پس از تصحیح همپوشانی دامنه روشنایی در تصاویر، آموزش و p,L2 انجام دهد. لذا پس انتخاب نظارت شده ویژگیهای استخراج شده از تصاویر را با استفاده از الگوریتم نظم ... . برای دانلود فایل کامل مقاله ارتقاء دقت طبقهبندی تلفیق دادههای راداری و اپتیکی مبتنی بر الگوریتم نوین MICO-SR با 14 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.