سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Improvement of static VAR compensator using PID and recurrent neural network

Publish Year: 1395
Type: Conference paper
Language: English
View: 690

This Paper With 10 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICTCK03_087

Index date: 1 July 2017

Improvement of static VAR compensator using PID and recurrent neural network abstract

In this paper, we comparison between PID and recurrent neural network in three strategy: first)controller svc with RNN , second)controller svc with PID ,third) svc without controller, an internal model control recurrent neural network method is used to control the switching of thyristor-controlled reactor in a static VAR compensator (SVC) system for regulating the voltage. The novel controller scheme contains several feedback loops instead of only a feed-forward loop as in the conventional recurrent neural network (RNN). In the proposed controller model, the RNN identifier creates a sample of the connected system and its output generates a part of inputs for the RNN controller which then sends the control signal to the SVC system. Three types of non-linear conditions are chosen to test the operational capability of the new control system to perform the voltage regulation satisfying the IEEE Std 519-1992. The test cases contain a three-phase fault power system, opening of one of the transmission lines in a double line transmission system and sudden changes in the load demand. Results show that the proposed control model is capable of regulating the voltage of the system in a desired range

Improvement of static VAR compensator using PID and recurrent neural network Keywords:

Improvement of static VAR compensator using PID and recurrent neural network authors

Hamid Neshat Ghalibaf

Department of Electrical Engineering Neyshabur branch Islamic Azad University Neyshabur , Iran

Ali asghar shojaei

Department of Electrical Engineering Neyshabur branch Islamic Azad University Neyshabur , Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
. Ju P, Handschin E, Reyer F (1996) Genetic algorithm ...
. Mumyakmaz B, Jin X, Wang C, Cheng T (1999) ...
d i stributionco nference, 1999 IEEE, vol 4. New Orleans ...
doi:10.1 _ 09/TDC. 1999.7561 10 ...
. Changaroon B, Srivastava S, Thukaram D, C hirarattananon S(1999) ...
. Al-Alawi S, Ellithy K (2000) Tuning of SVC damping ...
. Modi P, Singh S, Sharma J (2005) Loadability margin ...
doi:10. _ _ _ 6/j .engappai.2005 .0 _ .006 ...
. Ellithy K, Al-Naamany A (2000) A hybrid neuro-fuzzy static ...
. Safari A, Mekhilef S (2011) Simulation and hardware implementation ...
161 .doi:10.1 _ 09/tie.20 10.2048834 ...
. Chen W, Liu Y, Chen J, Wu J (1998) ...
conference on, Guangzhou, China, IEEE, pp. 839-842doi: 10. _ _ ...
. McCluskey PC (1993) Feedforward and recurrent neural networksand genetic ...
نمایش کامل مراجع