Improvement of static VAR compensator using PID and recurrent neural network
Publish Year: 1395
Type: Conference paper
Language: English
View: 690
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ICTCK03_087
Index date: 1 July 2017
Improvement of static VAR compensator using PID and recurrent neural network abstract
In this paper, we comparison between PID and recurrent neural network in three strategy: first)controller svc with RNN , second)controller svc with PID ,third) svc without controller, an internal model control recurrent neural network method is used to control the switching of thyristor-controlled reactor in a static VAR compensator (SVC) system for regulating the voltage. The novel controller scheme contains several feedback loops instead of only a feed-forward loop as in the conventional recurrent neural network (RNN). In the proposed controller model, the RNN identifier creates a sample of the connected system and its output generates a part of inputs for the RNN controller which then sends the control signal to the SVC system. Three types of non-linear conditions are chosen to test the operational capability of the new control system to perform the voltage regulation satisfying the IEEE Std 519-1992. The test cases contain a three-phase fault power system, opening of one of the transmission lines in a double line transmission system and sudden changes in the load demand. Results show that the proposed control model is capable of regulating the voltage of the system in a desired range
Improvement of static VAR compensator using PID and recurrent neural network Keywords:
Improvement of static VAR compensator using PID and recurrent neural network authors
Hamid Neshat Ghalibaf
Department of Electrical Engineering Neyshabur branch Islamic Azad University Neyshabur , Iran
Ali asghar shojaei
Department of Electrical Engineering Neyshabur branch Islamic Azad University Neyshabur , Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :