A Novel Data Association Algorithm for Single Target Tracking in Cluttered Environment

Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 501

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

CEPS04_049

تاریخ نمایه سازی: 11 مرداد 1396

Abstract:

In this paper a novel data association algorithm based on density-based spatial clustering of applications with noise (DBSCAN) and maximum entropy fuzzy clustering (MEFC) algorithm is proposed for single target tracking in cluttered environments. A modified version of DBSCAN clustering approach is used to eliminate unlikely measurement to overcome the problem of clutter or false alarm. Then, the association weights between validate measurements and track of target are determined according to the MEFC principle. The efficiency and the characteristic of the proposed algorithm in comparison with Nearest-Neighbor (NN) and Probabilistic data association (PDA) filters are demonstrated. The results show the performance of the proposed algorithm in cluttered environments

Keywords:

Target tracking , data association , DBSCAN , maximum entropy fuzzy clustering

Authors

Mousa Nazari

Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Saeid Pashazadeh

Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Y. Bar-Shalom and T. Fortmann, (1988), Tracking and Data Association. ...
  • Y. Bar-Shalom and X.-R. Li, (1995), Mult itarget-multi sensor tracking: ...
  • L. Liangqun, J. Hongbing, and G. Xinbo, (2006), Maximum entropy ...
  • A. D. Tafti and N. Sadati, (2010), Modified Maximum Entropy ...
  • A. M. Aziz, (2013), _ new ne are st-neighbor association ...
  • L. Liang-Qun and X. Wei-Xin, (2014), Intuitionistic fuzzy joint probabilistic ...
  • A. M. Aziz, (2015), A new multitarget tracking approach based ...
  • Y. Bar-Shalom, F. Daum, and J. Huang, (2009), The probabilistic ...
  • A. M. Aziz, (2011), A novel all-neighbor fuzzy association approach ...
  • J.-L. Yang and H.-B. Ji, (2011), A novel algorithm for ...
  • R.-P. Li and M. Mukaidono, (1995), A maximum- entropy approach ...
  • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, (1996), ...
  • T. N. Tran, K. Drab, and M. Daszykowski, (2013), Revised ...
  • G. Bordogna and D. Ienco, (2014), Fuzzy Core DBScan Clustering ...
  • C. B. Koteshwariah, N. R. Kisore, and V. Ravi, (2015), ...
  • L.-q. Li and W.-x. Xie, (2014), Bearings-only maneuvering target tracking ...
  • P. X. Liu and M.-H Meng, (2004), Online data-driven fuzzy ...
  • X. Wang, S. Challa, and R. Evans, (2002), Gating techniques ...
  • نمایش کامل مراجع