تحلیل دقت و عدم قطعیت مدل شبکه عصبی مصنوعی در پیش بینی عملکرد زعفران در خراسان جنوبی مبتنی بر داده های اقلیمی
Publish place: Saffron Agronomy and Technology، Vol: 5، Issue: 3
Publish Year: 1396
Type: Journal paper
Language: Persian
View: 557
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_SAFRON-5-3_005
Index date: 5 May 2018
تحلیل دقت و عدم قطعیت مدل شبکه عصبی مصنوعی در پیش بینی عملکرد زعفران در خراسان جنوبی مبتنی بر داده های اقلیمی abstract
با توجه به حساسیت عملکرد زعفران و تاثیرپذیری آن از پارامترهای اقلیمی و خاصیت غیرخطی توابع عملکرد گیاهی، در این تحقیق پیش بینی و تحلیل عدم قطعیت مدل شبکه عصبی مصنوعی در تخمین عملکرد زعفران انجام شد. بردار ورودی مدل از بین 37 مولفه مختلف، بر اساس استراتژی همبستگی و تحلیل تورم واریانس بهینه سازی شد و مدل با معماری 11-4-2-1 با تابع فعالسازی سیگمویید در مراحل سه گانه آموزش و آزمایش و ارزیابی عملکرد برتری را نشان داد. مقادیر پارامترهای MAE و RMSE مدل شبکه عصبی مصنوعی در مرحله یادگیری برابر 0/3 و 0/5 و در مرحله آزمایش بهترتیب 0/7 و 1 حاصل شد. نتایج تحلیل عدم قطعیت مونت کارلو بر مبنای 1000 نمونه گیری بدون جای گذاری، بر اساس فاکتورهای d-factor, 95% PPU, R2 بیانگر پهنای باند اطمینان مطلوب پیش بینی ها بود و الگوهای عمومی و کلی تغییرات عملکرد زعفران را به خوبی پیشبینی نمود. متوسط ضریب R2 مدل در مرحله آموزش و آزمایش بر اساس 1000 شبیهسازی مونت کارلو به ترتیب 0/92 و 0/58 بود که برای مدلهای عملکرد گیاهی مبتنی بر دادههای اقلیمی دارای معنی داری در سطح %1 است. با اینحال در شرایط حدی و مرزی، احتمال بروز وقایعی خارج از باند پیشبینی 95 درصد وجود داشته و لزوم توجه به شرایط مدیریت تغذیه، کود، خاک و آب مزارع در مدلهای هوشمند پیشبینی عملکرد را نشان میدهد. بر اساس نتایج پژوهش حاضر برنامه ریزان به جای مواجهه با یک رقم به عنوان پیشبینی، ترکیب این رقم و باند اطمینان را در اختیار داشته و میتوانند تصمیمات واقع بینانه تری اتخاذ نمایند.
تحلیل دقت و عدم قطعیت مدل شبکه عصبی مصنوعی در پیش بینی عملکرد زعفران در خراسان جنوبی مبتنی بر داده های اقلیمی Keywords:
تحلیل دقت و عدم قطعیت مدل شبکه عصبی مصنوعی در پیش بینی عملکرد زعفران در خراسان جنوبی مبتنی بر داده های اقلیمی authors
حسین ریاحی مدورا
استادیارگروه مهندسی آب دانشکده کشاورزی دانشگاه ولیعصر(عج)رفسنجان
عباس خاشعی سیوکی
دانشیارگروه مهندسی آب دانشکده کشاورزی دانشگاه بیرجند
اکرم سیفی
استادیارگروه مهندسی آب دانشکده کشاورزی دانشگاه ولیعصر(عج)رفسنجان