قطعه بندی تصاویر MRI جهت تشخیص اتوماتیک بیماری MS با استفاده از تبدیل ویولت و شبکه عصبی abstract
ما با هدف کشف افراد دارای فلج چندگانه MS از کنترل های سالم HC در تصویربرداری رزنانس مغناطیسی یک سیستم جدید را بر اساس ساختار تبدیل ویولت توسعه داده ایم. داده تصویربرداری MS از لابراتور eHealth در دانشگاه قبرس دانلود شده بود و داده تصویر برداری HC در بیمار ستان محلی ما با داوطلبانی اسکن شده بود که از بر اساس تبلیغات نام نویسی کرده اند. عادی سازی اسکن درونی برای حذف اختلاف سطح خاکستری بکار گرفته شد. ما هزینه های دسته بندی اشتباه را تنظیم می نماییم تا تاثیر توزیع دسته نامتوازن را بر عملکرد دسته بندی کاهش دهیم. ما از آنتروپی موجک تبدیل ویولت ایستا دو سطحی DWT استفاده کرده ایم تا خصیصه های تصاویر مغزی را استخراج نماییم سپس ما سه دسته کننده مبتنی بر اساس شبکه عصبی را مقایسه کرده ایم که عبارت اند از: درخت تصمیم، نزدیک ترین همسایه ها KNN و ما شین بردار پشتیبانی. نتایج آزمایشی یک شبکه عصبی را که در میان کل سه دسته کننده به بهترین نحو اجرا شده اند را نشان داده اند. بعلاوه، رویکرد جامع بر مبنای الگوی شبکه عصبی و با رویکرد تبدیل ویولت پیشنهادی با چهار رویکرد با جدیدترین تکنولوژی در اولویت قرار دارد. رویکرد کشف MS پیشنهادی ما موثر است
MRI (تصویر برداری بر اساس تشدید مغناطیسی) یک تکنیک پزشکی است که اساسا برای استفاده رادیولوژیست ها جهت مشاهده ساختار داخلی بدن بدون هیچ گونه عمل جراحی است.
MRI اطلاعات فراوانی را از بافت بدن انسانی فراهم می کند جهت تشخیص MS به ما کمک می کند. بخش بندی دقیق تصاویرMRI جهت تشخیص MS به کمک ابزارهای کامپیوتری، برای ما اهمیت دارد. بعد از بخش بندی مناسب تصاویر MRI، بیماری MS در دسته بندی خوش خیم بدخیم قرار می گیرد. بر همین مبنا از الگوریتم های شبکه عصبی بر مبنای توابع پایه ای شعاعی PCA به همراه ساختار ول تبدیل ویولت در رابطه با تشخیص و کلاس بندی و بخش بند تصاویر مربوط استفاده خواهد شد