سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Abnormal Red Blood Cells Detection Using Adaptive Neuro-fuzzy System

Publish Year: 1391
Type: Conference paper
Language: English
View: 467
این Paper فقط به صورت چکیده توسط دبیرخانه ارسال شده است و فایل کامل قابل دریافت نیست. برای یافتن Papers دارای فایل کامل، از بخش [جستجوی مقالات فارسی] اقدام فرمایید.

نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد

Export:

Link to this Paper:

Document National Code:

ACPLMED14_059

Index date: 11 November 2018

Abnormal Red Blood Cells Detection Using Adaptive Neuro-fuzzy System abstract

Red blood cells features like size, shape, and volume are important factors in diagnosingrelated blood disorders like iron deficiency and anemia. This paper proposes a method todetect abnormality in red blood cells using cell microscopic images. Adaptive localthresholding and bounding box methods are used to extract inner and outer diameters of redcells. An adaptive network-based fuzzy inference system (ANFIS) is used to classify bloodsamples to normal and abnormal. Accuracy of the proposed method and area under ROCcurve are 96.6% and 0.9950 respectively.

Abnormal Red Blood Cells Detection Using Adaptive Neuro-fuzzy System Keywords:

Abnormal Red Blood Cells Detection Using Adaptive Neuro-fuzzy System authors

N Babazadeh Khameneh

Department of Artificial Intelligence, Science and Research Branch, Islamic Azad University, Tehran, Iran

H Arabalibeik

Research Center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran

P Salehianc

Sarem Cell Research Center (SCRC), Sarem women s Hospital, Tehran, Iran

S Setayeshi

Medical Radiation Department, Amirkabir University of Technology, Tehran, Iran