سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption

Publish Year: 1395
Type: Journal paper
Language: English
View: 502

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JCESH-5-2_006

Index date: 14 October 2019

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption abstract

Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum sensors as Cluster Heads (CHs) to eliminate the number of transmissions and subsequently to attain more network lifetime. Clustering mechanism consist of two phases: CH selection and cluster formation. One of the major problems affecting energy consumption in WSN is cluster head selection. The proposed method is used for selecting suboptimum cluster head nodes. However, selecting CHs is not an easy subject. In this paper this issue will be discussed based on the residual energy or distance from Base Station (BS) or both of them with considering BS coordinate by BGSA algorithm. Simulation results show that if the BS is not very far from the network area, considering distance and residual energy for selecting CHs by proposed method can be efficient for reducing energy consumption and prolonging lifetime.

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption Keywords:

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption authors

M. Mirzasadeghi

Electrical & Electronic Engineering Department, Shahed University, Tehran, IRAN

H. Bakhshi

Electrical & Electronic Engineering Department, Shahed University, Tehran, IRAN

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
S. Ramakrishnan and T. Thyagarajan, Energy Efficient Medium Access Control ...
J. Parvin and C. Vasanthanayaki, Gravitational Search Algorithm Based Mobile ...
S. Nithyakalyani and S. Kumar, Data Aggregation in Wireless Sensor ...
D. Wei and H. Chan, Clustering ad hoc networks: Schemes ...
V. Pal, G. Singh, R. Yadav, and P. Pal, Energy ...
P. Chan, R. Sheriff, Y. Conforto and C. Tocci, Data ...
M. Chtterjee, S. Karaki, and D. Turgut, WCA: A Weighted ...
S. Banerjee and S. Khuller, A Clusteriavung Scheme for Hierarchical ...
W. Chen, J. How, and L. Sha Dynamic Clustering for ...
S. Basagni, Disributed Clustering for ad-hoc Networks, International Symposium of ...
H. Chan and A. Perrig, An Emergent Algorithm for Highly ...
R. Marjan, B. Dezfouli, K. Bakar, and M. Lee, Multiple ...
W. Heinzelman, A. Chandrakasan and H. Balakrishnan, Energy-Efficient Communication Protocol ...
M. Rafsanjani and H. Imani, Clustering Algorithm for Wireless Sensor ...
Y. Kumar and G. Sahoo, A Review on Gravitational Search ...
J. Gutierrez and J. Pulido, A gravitational search algorithm for ...
R. Precup, R. David, S. Preitl, and M. Radac, Novel ...
J. Chen, C. Yang, C. Tsai, and K. Huang, A ...
A. Rostami, H. Bernety, and A. Hosseinabadi, A Novel and ...
R. Krishnaprabna and A. Gopakmar, Performance of Gravitational search Algorithm ...
P. Garg, R. Rani, and G. Singh, Achieving Energy Efficient ...
E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, BGSA: Binary Gravitational ...
P. Namin and M. Tinati, Node Localization Using Particle Swarm ...
D. Hoang, R. Kumar, and S. Panda, Realization of a ...
M. Bajelan, H. Bakhshi, An Adaptive LEACH-based Clustering Algorithm for ...
نمایش کامل مراجع